Кантора множество это:

Кантора множество
        совершенное множество точек на прямой (см. Замкнутые множества), не содержащее ни одного отрезка; построено Г. Кантором (1883). Конструируется следующим образом (см. рис.): на отрезке [0, 1] удаляется интервал (1/3, 2/3), составляющий его среднюю треть; далее из каждого оставшегося отрезка [0, 1/3] и [2/3, 1] также удаляется интервал, составляющий его среднюю треть; этот процесс удаления интервалов продолжается неограниченно; множество точек отрезка [0, 1], оставшееся после удаления всех этих интервалов, и называют К. м., или канторовым множеством. Удалённые интервалы называют смежными интервалами. К. м. имеет мощность Континуума. К. м. (на числовой прямой) можно определить арифметически как множество тех чисел, которые записываются с помощью троичных дробей вида 0, a1 a2... an..., где каждая из цифр a1, a2,..., an,... равна 0 или 2. К. м. играет важную роль в различных вопросах математики (в топологии, теории функций действительного переменного).
        Рис. к ст. Кантора множество.
        Рис. к ст. Кантора множество.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Кантора множество" в других словарях:

  • Кантора множество — Канторово множество есть один из простейших фракталов, подмножество единичного отрезка вещественной прямой, которое является классическим примером «плохого множества» в математическом анализе. Описано в 1883 году Г. Кантором. Содержание 1… …   Википедия

  • МНОЖЕСТВО —         см. Класс в логике. Философский энциклопедический словарь. М.: Советская энциклопедия. Гл. редакция: Л. Ф. Ильичёв, П. Н. Федосеев, С. М. Ковалёв, В. Г. Панов. 1983. МНОЖЕСТВО …   Философская энциклопедия

  • множество — набор комплект — [http://www.rfcmd.ru/glossword/1.8/index.php?a=index d=4318] множество Одно из основных понятий современной математики, «произвольная совокупность определенных и различимых объектов, объединенных мысленно в единое… …   Справочник технического переводчика

  • Множество — [set] одно из основных понятий современной математики, «произвольная совокупность определенных и различимых объектов, объединенных мысленно в единое целое». (Так определял множество основатель теории множеств, известный немецкий… …   Экономико-математический словарь

  • Множество — У этого термина существуют и другие значения, см. Множество (значения). Запрос «Целое» перенаправляется сюда; о типе данных в программировании см. Целое (тип данных). Множество  одно из ключевых понятий математики, в частности, теории… …   Википедия

  • КАНТОРА ТЕОРЕМА — 1) Множество 2A, состоящее из всех подмножеств множества А, не равномощно ни самому А, ни его подмножеству. Идея доказательства этой теоремы, принадлежащая Г. Кантору (G.Cantor, 1878), получила название канторова диагонального метода и играет… …   Математическая энциклопедия

  • Кантора теорема — В теории множеств теорема Кантора гласит, что Любое множество менее мощно, чем множество всех его подмножеств. Доказательство Предположим, что существует множество A, равномощное множеству всех своих подмножеств 2A, то есть что есть биекция f,… …   Википедия

  • Множество Кантора — Канторово множество есть один из простейших фракталов, подмножество единичного отрезка вещественной прямой, которое является классическим примером «плохого множества» в математическом анализе. Описано в 1883 году Г. Кантором. Содержание 1… …   Википедия

  • Множество кантора — Канторово множество есть один из простейших фракталов, подмножество единичного отрезка вещественной прямой, которое является классическим примером «плохого множества» в математическом анализе. Описано в 1883 году Г. Кантором. Содержание 1… …   Википедия

  • МНОЖЕСТВО — набор, совокупность, собрание каких либо объектов, наз. его элементами, обладающих общим для всех их характеристич. свойством. Множество есть многое, мыслимое нами как единое (Г. Кантор). Это не является в полном смысле логич. определением… …   Математическая энциклопедия

Книги



Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»