Инвариантность (в математике) это:

Инвариантность (в математике)
Инвариантность, неизменность, независимость от физических условий. Чаще рассматривается И. в математическом смысле — неизменность какой-либо величины по отношению к некоторым преобразованиям (см. Инварианты). Например, если рассматривать движение материальной точки в двух системах координат, повёрнутых одна относительно другой на некоторый угол, то проекции скорости движения будут изменяться при переходе от одной системы отсчёта к другой, но квадрат скорости, а следовательно, и кинетическая энергия останутся неизменными, т. е. кинетическая энергия инвариантна относительно пространственных вращений системы отсчёта. Важным случаем преобразований являются преобразования координат и времени при переходе от одной инерциальной системы отсчёта к другой (Лоренца преобразования). Величины, не изменяющиеся при таких преобразованиях, называются лоренц-инвариантными. Пример такого инварианта — так называемый четырёхмерный интервал, квадрат которого равен s212 = (x1x2)2 + (y1y2)2 + (z1 — — z2)2c2(t1t2)2, где x1, y1, z1 и x2, y2, z2 координаты двух точек пространства, в которых происходят некоторые события, a t1 и t2 моменты времени, в которые эти события совершаются, с — скорость света. Другой пример: напряжённости электрического Е и магнитного Н полей меняются при преобразованиях Лоренца, но E2H2 и (EH) являются лоренц-инвариантными. В общей теории относительности (теории тяготения) рассматриваются величины, инвариантные относительно преобразований к произвольным криволинейным координатам, и т. д.

Важность понятия И. обусловлена тем, что с его помощью можно выделить величины, не зависящие от выбора системы отсчёта, т. е. характеризующие внутренние свойства исследуемого объекта. И. тесно связана с имеющими большое значение сохранения законами. Равноправие всех точек пространства (однородность пространства), математически выражающееся в виде требования И. некоторой функции, определяющей уравнения движения (так называемая лагранжиана) относительно преобразований переноса начала координат, приводит к закону сохранения импульса; равноправие всех направлений в пространстве (изотропия пространства) — к закону сохранения момента количества движения; равноправие всех моментов времени — к закону сохранения энергии и т. д. (Нётер теорема).

В. И. Григорьев.


Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Инвариантность (в математике)" в других словарях:

  • Симметрия (в математике) — Симметрия (от греч. symmetria ‒ соразмерность) в математике, 1) симметрия (в узком смысле), или отражение (зеркальное) относительно плоскости a в пространстве (относительно прямой а на плоскости), ‒ преобразование пространства (плоскости), при… …   Большая советская энциклопедия

  • Инвариантность — Инвариант термин, используемый в математике и физике, а также в программировании, обозначает нечто неизменяемое. Кроме того, инварианты используются в олимпиадных задачах по математике для школьников. Абстрактная структурная единица языка фонема …   Википедия

  • ИНВАРИАНТНОСТЬ — [от лат. invarians (invariantis) неизменяющийся] 1) И. в математике св во неизменности по отношению к к. л. преобразованию (условию) или совокупности преобразований. 2) И. в автоматике независимость одной или неск. регулируемых величин в системах …   Большой энциклопедический политехнический словарь

  • Инвариантность — I ж. 1. отвлеч. сущ. по прил. инвариантный I 2. Свойство сохраняться неизменным при определённых преобразованиях переменных (в математике). II ж. 1. отвлеч. сущ. по прил. инвариантный II 2. Отвлеченность от конкретных реализаций (в лингвистике).… …   Современный толковый словарь русского языка Ефремовой

  • Инвариантность — (см. Инвариант) 1) неизменность, независимость от чего либо; 2) (в физике) неизменность какой либо величины при изменении физических условий или (в математике) по отношению к некоторым преобразованиям (к преобразованиям Галилея, Лоренца и т. д.) …   Начала современного естествознания

  • Масштабная инвариантность — или скейлинг  свойство уравнений физики, сохранять свой вид при изменении всех расстояний и промежутков времени в одинаковое число раз, то есть Причём здесь подразумевается лишь изменение единиц измерения, само пространство время остаётся… …   Википедия

  • Философия в советской и постсоветской России —    1. Советский период. Развитие философской мысли в России после 1917 г. претерпело кардинальные изменения. Мн. представители религиозно философских течений, господствовавших в кон. XIX нач. XX в., были высланы или эмигрировали из страны.… …   Русская Философия. Энциклопедия

  • Инвариант Казимира — В математике инвариант Казимира, или оператор Казимира примечательный элемент центра универсальной обёртывающей алгебры алгебры Ли. Примером является квадрат оператора момента импульса, который является инвариантом Казимира 3 х мерной группы… …   Википедия

  • Симметрия — У этого термина существуют и другие значения, см. Симметрия (значения). «Витрувианский человек» …   Википедия

  • Симметрия — I Симметрия (от греч. symmetria соразмерность)         в математике,          1) симметрия (в узком смысле), или отражение (зеркальное) относительно плоскости α в пространстве (относительно прямой а на плоскости), преобразование пространства… …   Большая советская энциклопедия

Книги



Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»