Зоны Френеля это:

Зоны Френеля
        участки, на которые можно разбить поверхность световой (или звуковой) волны для вычисления результатов дифракции света (См. Дифракция света) (или звука). Впервые этот метод применил О. Френель в 1815—19. Суть метода такова. Пусть от светящейся точки Q (рис.) распространяется сферическая волна и требуется определить характеристики волнового процесса, вызванного ею в точке Р. Разделим поверхность волны S на кольцевые зоны; для этого проведём из точки Р сферы радиусами PO, Pa = PO + λ/2; Pb = Pa + λ/2, Pc = Pb + λ/2, (О — точка пересечения поверхности волны с линией PQ; λ — длина световой волны). Кольцеобразные участки поверхности волны, «вырезаемые» из неё этими сферами, и называется З. Ф. Волновой процесс в точке Р можно рассматривать как результат сложения колебаний, вызываемых в этой точке каждой З. Ф. в отдельности. Амплитуда таких колебаний медленно убывает с возрастанием номера зоны (отсчитываемого от точки О), а фазы колебаний, вызываемых в Р смежными зонами, противоположны. Поэтому волны, приходящие в Р от двух смежных зон, гасят друг друга, а действие зон, следующих через одну, складывается. Если волна распространяется, не встречая препятствий, то, как показывает расчёт, её действие (сумма воздействий всех З. Ф.) эквивалентно действию половины первой зоны. Если же при помощи экрана с прозрачными концентрическими участками выделить части волны, соответствующие, например, N нечётным зонам Френеля, то действие всех выделенных зон сложится и амплитуда колебаний Uнечёт в точке Р возрастёт в 2N раз, а интенсивность света в 4N2 раз, причём освещённость в точках, окружающих Р, уменьшится. То же получится при выделении только чётных зон, но фаза суммарной волны Uчёт будет иметь противоположный знак.
         Такие зонные экраны (т. н. линзы Френеля) находят применение не только в оптике, но и в акустике и радиотехнике — в области достаточно малых длин волн, когда размеры линз получаются не слишком большими (сантиметровые радиоволны, ультразвуковые волны).
         Метод З. Ф. позволяет быстро и наглядно составлять качественное, а иногда и довольно точное количественное представление о результате дифракции волн при различных сложных условиях их распространения. Он применяется поэтому не только в оптике, но и при изучении распространения радио- и звуковых волн для определения эффективной трассы «луча», идущего от передатчика к приёмнику; для выяснения того, будут ли при данных условиях играть роль дифракционные явления; для ориентировки в вопросах о направленности излучения, фокусировке волн и т.п.
        Рис. к ст. Зоны Френеля.
        Рис. к ст. Зоны Френеля.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Зоны Френеля" в других словарях:

  • ЗОНЫ ФРЕНЕЛЯ — участки, на к рые разбивают поверхность фронта световой волны для упрощения вычислений при определении амплитуды волны в заданной точке пр ва. Метод З. Ф. используется при рассмотрении задач о дифракции волн в соответствии с Гюйгенса Френеля… …   Физическая энциклопедия

  • ФРЕНЕЛЯ — (1) дифракция (см.) сферической световой волны, при рассмотрении которой нельзя пренебречь кривизной поверхности падающей и дифрагировавшей (либо только дифрагировавшей) волн. В центре дифракционной картины от круглого непрозрачного диска всегда… …   Большая политехническая энциклопедия

  • ФРЕНЕЛЯ ЗОНЫ — участки, на которые разбивается волновая поверхность при рассмотрении дифракционных волн (Гюйгенса Френеля принцип). Зоны Френеля выбираются так, чтобы удаление каждой следующей зоны от точки наблюдения было на половину длины волны больше, чем… …   Большой Энциклопедический словарь

  • ФРЕНЕЛЯ ДИФРАКЦИЯ — дифракция сферич. световой волны на неоднородности (напр., отверстии в экране), размер к рой b сравним с диаметром первой зоны Френеля ?(z?): b=?(z?) (дифракция в сходящихся лучах), где z расстояние точки наблюдения до экрана. Назв. в честь франц …   Физическая энциклопедия

  • Френеля зоны — участки, на которые разбивают волновую поверхность при рассмотрении дифракции волн (Гюйгенса Френеля принцип). Зоны Френеля выбираются так, чтобы удаление каждой следующей зоны от точки наблюдения было на половину длины волны больше, чем удаление …   Энциклопедический словарь

  • Френеля дифракция —         дифракция сферической световой волны на неоднородности (например, отверстии), размер которой сравним с диаметром одной из зон Френеля (См. Зоны Френеля). Название дано в честь изучившего этот вид дифракции О. Ж. Френеля (См. Френель).… …   Большая советская энциклопедия

  • ФРЕНЕЛЯ ЗОНЫ — участки, на к рые разбивают поверхность фронта световой волны для упрощения вычислений при определении амплитуды волны в заданной точке про странства. Метод Ф. з. используется при рассмотрении задач о дифракции волн в соответствии с Гюйгенса… …   Физическая энциклопедия

  • ФРЕНЕЛЯ ДИФРАКЦИЯ — дифракция сферической электромагнитной волны на неоднородности, напр., отверстии в экране, размер которого b сравним с размером Френеля зоны, т. е. , где z расстояние точки наблюдения от экрана, ?? длина волны. Назван по имени О. Ж. Френеля …   Большой Энциклопедический словарь

  • Френеля дифракция — дифракция сферической электромагнитной волны на неоднородности, например отверстии в экране, размер которого b сравним с размером Френеля зоны, то есть , где z  расстояние точки наблюдения от экрана, λ  длина волны. Названа по имени О. Ж. Френеля …   Энциклопедический словарь

  • ФРЕНЕЛЯ ЗОНЫ — участки, на к рые разбивают волновую поверхность при рассмотрении дифракции волн (Гюйгенса Френеля принцип). Ф. з. выбираются так, чтобы удаление каждой след. зоны от точки наблюдения было на половину длины волны больше, чем удаление предыдущей… …   Естествознание. Энциклопедический словарь

Книги

  • Беспроводные сети Wi-Fi, Пролетарский А. В., Баскаков И. В., Чирков Д. Н., Федотов Р. А., Бобков А. В., Платонов В. А.. Учебное пособие предназначено для широкого круга читателей, интересующихся теоретическими и прикладными вопросами построения беспроводных сетей на базе стандартов IEEE 802.11 a/b/g… Подробнее  Купить за 150 руб


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»