Жордана кривая это:

Жордана кривая
        жорданова кривая, геометрическое место точек М (х, у) плоскости, координаты которых удовлетворяют уравнениям: х = φ(t), y = ψ (t) где φ и ψ — непрерывные функции аргумента t на некотором отрезке [a, b]. Иначе, Ж. к. есть непрерывный образ отрезка [а, b]. Это определение является одним из возможных математически строгих определений понятия непрерывной кривой. Однако Ж. к. может иметь весьма мало общего с тем представлением, которое обычно связывается с кривой; например, Ж. к. может проходить через все точки некоторого квадрата.
         Если точки М (х, у) Ж. к., соответствующие различным значениям t, различны между собой, то такая Ж. к. называется простой дугой. Иными словами, простая дуга есть Ж. к. без кратных точек. Простая дуга является гомеоморфным (см. Гомеоморфизм) образом отрезка. Если же точки Ж. к., соответствующие t = а и t = b, совпадают, а все остальные точки между собой различны и отличны от М [φ(a), ψ(a)], то Ж. к. называется простым замкнутым контуром. Такая Ж. к. является гомеоморфным образом окружности.
         Французский математик М. Э. К. Жордан, по имени которого названа Ж. к., доказал в 1882, что всякая замкнутая Ж. к. без кратных точек делит плоскость на две области, из которых одна является внутренней по отношению к этой кривой, а другая внешней. Это предложение носит название теоремы Жордана.
         С. Б. Стечкин.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Жордана кривая" в других словарях:

  • Жордана кривая — Кривая или линия  геометрическое понятие, определяемое в разных разделах геометрии различно. Содержание 1 Элементарная геометрия 2 Параметрические определения 3 Кривая Жордана …   Википедия

  • ЖОРДАНА КРИВАЯ — гомеоморфный образ окружности. Назв. по имени К. Жордана (С. Jordan), предложившего это определение. См. также Линия …   Математическая энциклопедия

  • Кривая Жордана — Кривая или линия  геометрическое понятие, определяемое в разных разделах геометрии различно. Содержание 1 Элементарная геометрия 2 Параметрические определения 3 Кривая Жордана …   Википедия

  • Кривая Урысона — (далее кривая)  наиболее общее (но не чрезмерно) определение кривой, введённое Урысоном в 1921. Это определение обобщает определение Кантора на произвольную размерность. Определение формулируется следующим образом: Кривой называется связное… …   Википедия

  • Кривая Пеано — общее название для параметрических кривых, образ которых содержит квадрат (или, в более общем смысле, открытые области пространства) Содержание 1 Свойства 2 Примеры 3 Обобщения …   Википедия

  • Кривая Леви — Кривая Леви  фрактал. Предложен французским математиком П. Леви. Получается, если взять половину квадрата вида /, а затем каждую сторону заменить таким же фрагментом, и, повторяя эту операцию, в …   Википедия

  • Кривая погони — при различных параметрах Кривая погони  кривая, представляющая собой решение задачи о «погоне», которая ставится следующим образом. Пусть …   Википедия

  • Кривая — У этого термина существуют и другие значения, см. Кривая (значения). Кривая или линия  геометрическое понятие, определяемое в разных разделах геометрии различно. Содержание 1 Элементарная геометрия 2 …   Википедия

  • Кривая Безье — Кривые Безье или Кривые Бернштейна Безье были разработаны в 60 х годах XX века независимо друг от друга Пьером Безье (Pierre Bézier) из автомобилестроительной компании «Рено» и Полем де Кастельжо (Paul de Faget de Casteljau) из компании «Ситроен» …   Википедия

  • Кривая Штейнера — Дельтоида Дельтоида (кривая Штейнера) плоская кривая, описываемая фиксированной точкой окружности, катящейся по внутренней стороне другой окружности, радиус которой втрое больше радиуса первой. Название кривая получила за сходство с греческой… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»