Буняковского неравенство это:

Буняковского неравенство
        одно из важнейших неравенств математического анализа, утверждающее, что
        
         установлено В. Я. Буняковским (См. Буняковский). Это неравенство аналогично элементарному алгебраическому Коши неравенству (См. Коши неравенство):
        
         и может быть получено из последнего посредством перехода к пределу. Нередко в математической литературе Б. н. ошибочно называется неравенством Шварца — по имени Г. А. Шварца. Однако В. Я. Буняковский опубликовал свою работу о неравенствах ещё в 1859, тогда как в работах Шварца то же неравенство появляется не ранее 1884 (без ссылок на Буняковского).
         Лит.: Bounjakowsky W., Sur quelques inégalités concernant les intégrates ordinaires et les intégrates aux différences finies (Lu ie 29 avril 1859), «Mémoires de l'Académie des sciences de St.-Pétersbourg. 7 série», 1859, t. 1, № 9.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Буняковского неравенство" в других словарях:

  • Буняковского неравенство — Неравенство Коши Буняковского связывает норму и скалярное произведение векторов в линейном пространстве. Это неравенство эквивалентно неравенству треугольника для нормы в пространстве со скалярным произведением. Неравенство Коши Буняковского… …   Википедия

  • БУНЯКОВСКОГО НЕРАВЕНСТВО — неравенство математич. анализа; для функций j(x).и g(x), интегрируемых с квадратом, установлено В. Я. Буняковским [1]. Это неравенство аналогично алгебраич. неравенству Коши: Иногда Б. н. наз. неравенством Шварца (по имени Г. А. Шварца; Н. A.… …   Математическая энциклопедия

  • Неравенство Коши — Буняковского — Неравенство Коши  Буняковского связывает норму и скалярное произведение векторов в линейном пространстве. Это неравенство эквивалентно неравенству треугольника для нормы в пространстве со скалярным произведением. Неравенство Коши … …   Википедия

  • Неравенство Коши — Неравенство Коши  Буняковского связывает норму и скалярное произведение векторов в евклидовом пространстве. Это неравенство эквивалентно неравенству треугольника для нормы. Неравенство Коши  Буняковского иногда, особенно в иностранной… …   Википедия

  • Неравенство Буняковского — Неравенство Коши Буняковского связывает норму и скалярное произведение векторов в линейном пространстве. Это неравенство эквивалентно неравенству треугольника для нормы в пространстве со скалярным произведением. Неравенство Коши Буняковского… …   Википедия

  • Неравенство Коши-Буняковского — связывает норму и скалярное произведение векторов в линейном пространстве. Это неравенство эквивалентно неравенству треугольника для нормы в пространстве со скалярным произведением. Неравенство Коши Буняковского иногда, особенно в иностранной… …   Википедия

  • Неравенство Коши—Буняковского — связывает норму и скалярное произведение векторов в линейном пространстве. Это неравенство эквивалентно неравенству треугольника для нормы в пространстве со скалярным произведением. Неравенство Коши Буняковского иногда, особенно в иностранной… …   Википедия

  • Неравенство Шварца — Неравенство Коши Буняковского связывает норму и скалярное произведение векторов в линейном пространстве. Это неравенство эквивалентно неравенству треугольника для нормы в пространстве со скалярным произведением. Неравенство Коши Буняковского… …   Википедия

  • Неравенство Гёльдера — в функциональном анализе и смежных дисциплинах  это фундаментальное свойство пространств . Содержание 1 Формулировка 2 Доказательство …   Википедия

  • Неравенство Гельдера — Неравенство Гёльдера в функциональном анализе и смежных дисциплинах  это фундаментальное свойство пространств Lp. Содержание 1 Формулировка 2 Частные случаи 2.1 Неравен …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»