Бесконечное произведение это:

Бесконечное произведение
        произведение бесконечного числа сомножителей u1, u2,..., un,..., т. е. выражение вида
        
         Б. п., в котором сомножителями являются числа, иногда называемые бесконечным числовым произведением. Б. п. не всегда может быть приписано числовое значение. Если существует отличный от нуля Предел последовательности частичных произведений
         pn = u1 u2... un
        при n → ∞, то Б. п. называется сходящимся, a lim pn = р — его значением, и пишут:
         Исторически Б. п. впервые встретились в связи с задачей о вычислении числа π. Так, французский математик Ф. Виет (16 в.) получил формулу:
        Исторически Б. п. впервые встретились в связи с задачей о вычислении числа π. Так, французский математик Ф. Виет (16 в.) получил формулу:
        
         а английский математик Дж. Валлис (17 в.) — формулу:
        
         Особое значение Б. п. приобрели после работ Л. Эйлера, применившего Б. п. для изображения функций. Примером может служить разложение синуса:
         Разложения функций в Б. п. аналогичны разложениям многочленов на линейные множители; они замечательны тем, что выявляют все значения независимого переменного, при которых функция обращается в нуль.
        Разложения функций в Б. п. аналогичны разложениям многочленов на линейные множители; они замечательны тем, что выявляют все значения независимого переменного, при которых функция обращается в нуль.
         Для сходимости Б. п. необходимо и достаточно, чтобы un ≠ 0 для всех номеров n, чтобы uN > 0, начиная с некоторого номера N, и чтобы сходился ряд
         Т. о., исследование сходимости Б. п. эквивалентно исследованию сходимости этого ряда.
        Т. о., исследование сходимости Б. п. эквивалентно исследованию сходимости этого ряда.
         Лит.: Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, т. 2, М.— Л., 1966; Ильин В. А., Позняк Э. Г., Основы математического анализа, М., 1965.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Бесконечное произведение" в других словарях:

  • БЕСКОНЕЧНОЕ ПРОИЗВЕДЕНИЕ — произведение бесконечного числа сомножителей , т. е. выражение вида …   Большой Энциклопедический словарь

  • бесконечное произведение — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN infinite product …   Справочник технического переводчика

  • Бесконечное произведение — В математике для последовательности чисел бесконечное произведение определяется как предел частичных произведений при . Произведение называется сходящимся, когда предел существует и не равен нулю. Иначе произведение называется расходящимся.… …   Википедия

  • бесконечное произведение — произведение бесконечного числа сомножителей u1, u2,..., un,..., то есть выражение вида: u1u2...un... = П∞k = 1 Uk * * * БЕСКОНЕЧНОЕ ПРОИЗВЕДЕНИЕ БЕСКОНЕЧНОЕ ПРОИЗВЕДЕНИЕ, произведение бесконечного числа сомножителей , т. е. выражение вида …   Энциклопедический словарь

  • БЕСКОНЕЧНОЕ ПРОИЗВЕДЕНИЕ — произведение бесконечного числа сомножителей и1 , и2, ..., иn, ..., т. е. выражение вида: u1u2...un...=Пk=1 uk …   Естествознание. Энциклопедический словарь

  • БЕСКОНЕЧНОЕ ПРОИЗВЕДЕНИЕ — выражение содержащее бесконечное множество числовых или функциональных сомножителей, каждый из к рых отличен от нуля. Б. п. наз. сходящимся, если существует отличный от нуля предел последовательности частичных произведений при . 3начением Б. п.… …   Математическая энциклопедия

  • ЭЙЛЕРА ПРОИЗВЕДЕНИЕ — бесконечное произведение вида где s действительное число и . пробегает все простые числа. Это произведение абсолютно сходится при всех s>1. Аналогичное произведение для комплексных чисел абсолютно сходится при и задает в этой области дзета… …   Математическая энциклопедия

  • РИССА ПРОИЗВЕДЕНИЕ — бесконечное произведение вида для всех . С помощью таких произведений ( при всех ) Ф. Рисс (F. Riesz) указал первый пример непрерывной функции с ограниченным изменением, коэффициенты Фурье к рой не равны . Если q>3,то тождество определяет ряд… …   Математическая энциклопедия

  • Прямое произведение — Прямое или декартово произведение  множество, элементами которого являются всевозможные упорядоченные пары элементов исходных двух множеств. Данное понятие употребляется не только в теории множеств, но также в алгебре, топологии и прочих… …   Википедия

  • Декартово произведение — Прямое или декартово произведение множеств  множество, элементами которого являются всевозможные упорядоченные пары элементов исходных двух множеств. Данное понятие употребляется не только в теории множеств, но также в алгебре, топологии и прочих …   Википедия

Книги

Другие книги по запросу «Бесконечное произведение» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»