Автофазировка это:

Автофазировка
        явление, обеспечивающее ускорение электронов, протонов, альфа-частиц, многозарядных ионов до высоких энергий (от нескольких Мэв до сотен Гэв) в большинстве ускорителей заряженных частиц (См. Ускорители заряженных частиц); открыто советским физиком В. И. Векслером в 1944 и независимо от него американским физиком Э. Макмилланом в 1945. Принципиальную роль это явление сыграло в повышении предела достижимых энергий в циклических ускорителях.
         В циклических ускорителях частицы совершают движение по орбитам в специальной вакуумной камере, помещенной в магнитное поле, и многократно проходят через ускоряющие электроды. Ускорение частиц происходит под действием высокочастотного электрического поля, приложенного к ускоряющим электродам. Для непрерывного ускорения частиц необходимо, чтобы в моменты ускорения направления движения частицы и электрического поля совпадали; для этого нужно обеспечить синхронизм (резонанс) между движением частиц и изменением электрического поля. Если амплитуда разности потенциалов между электродами равна V0, то приобретаемая частицей с зарядом е энергия ΔЕ при каждом прохождении через ускоряющий промежуток равна ΔЕ = eV0cosφ, где (φ — фаза электрического поля в момент прохождения частицы, отсчитываемая от его максимального значения. Фазу поля φ, при которой частица пролетает через ускоряющий промежуток, называют для краткости фазой частицы.
         Чтобы частица двигалась синхронно с изменением ускоряющего поля, её частота обращения ω должна быть равна или кратна частоте ω0 электрического поля: ω0= qω, где q — целое число (кратность резонанса). Тогда частица будет проходить ускоряющие электроды при одном и том же значении фазы φ и при каждом прохождении получать от поля одну и ту же энергию. Поэтому она будет всё время ускоряться.
         Такая ситуация выполняется в Циклотроне единственном резонансном ускорителе, который существовал до открытия принципа А. В циклотроне частицы движутся в постоянном магнитном поле Н с постоянной частотой обращения ω = eH/mc (где m — масса частицы, с — скорость света). Поэтому при частоте ускоряющего электрического поля ω0 = ω для всех частиц наблюдается точный резонанс с полем.
         Однако при достижении достаточно большой энергии массу m уже нельзя считать постоянной: начинает сказываться эффект увеличения массы частицы с ростом энергии (см. Относительности теория). Возрастание массы приводит к уменьшению частоты обращения ω и к нарушению резонанса между движением частицы и ускоряющим полем. Частицы перестают получать энергию от электрического поля и выпадают из режима ускорения. Поэтому в обычном циклотроне существует предельная энергия, выше которой ускорение невозможно. Для протонов этот предел энергии составляет примерно 20 Мэв.
         Для сохранения резонанса можно, например, медленно снижать частоту ω0 ускоряющего поля в соответствии с уменьшением ω или медленно изменять напряжённость магнитного поля Н, чтобы компенсировать уменьшение частоты ω (или вместе и то и другое).
         Но в ускорителе одновременно ускоряются сотни и тысячи миллиардов частиц, имеющих разброс по энергиям, а значит, и по массам. Следовательно, частицы будут иметь различные частоты обращения ω. Поэтому невозможно осуществить точный резонанс с ускоряющим полем для движения всего множества ускоряемых частиц. До открытия принципа А. эта трудность казалась непреодолимой.
         Векслер и Макмиллан показали, что именно благодаря зависимости частоты обращения частиц от их энергии (массы), приводящей к нарушению точного синхронизма движения частиц с ускоряющим полем, само поле будет автоматически осуществлять для большого количества частиц подстройку синхронизма в среднем. Иными словами, в случае, когда ω зависит от энергии, ускоряющее поле частоты ω0 (которая может и медленно меняться) заставляет частицы двигаться по орбитам с частотами, в среднем равными (или кратными) частоте ω0, т. е. реализует резонанс в среднем; при этом фазы частиц колеблются и концентрируются около одной фазы φ0 (см. ниже), которая называется синхронной, или равновесной. Это явление и называется А.
         Т. о., А. приводит к тому, что частицы в среднем обращаются синхронно с изменением ускоряющего поля: ωср = ω0.
         Рассмотрим, как осуществляется А. в циклическом ускорителе с однородным и постоянным во времени магнитным полем и при q = 1. Частота обращения частиц в таком ускорителе обратно пропорциональна их массе, а следовательно, их полной энергии (равной сумме энергии покоя и кинетической энергии). Синхронная частица (воображаемая частица, которая движется в точном резонансе с ускоряющим полем) будет ускоряться при одной и той же фазе φ0 и каждый раз получать энергию eV0 cos φ0. Для того чтобы движение частиц по орбитам было устойчивым, т. е. чтобы частицы с фазами φ≠φ0 не выпадали из режима ускорения, синхронная фаза φ0 должна быть положительной — находиться на спаде ускоряющего напряжения (рис. 1). Действительно, частица с меньшей энергией, для которой частота обращения ω > ω0 и которая в некоторый момент движется вместе с синхронной, в дальнейшем будет опережать синхронную, попадать в ускоряющий промежуток раньше и ускоряться при меньшей фазе φ10. Следовательно, она получит большую энергию: eV0 cos φ1 > eV0 cos φ0, и её частота начнёт уменьшаться, так что в какой-то момент наступит точный резонанс, ω = ω0. Но этот резонанс является только мгновенным — ведь частица по-прежнему будет получать от поля большую энергию и её частота ω будет некоторое время продолжать уменьшаться и станет меньше синхронной, ω < ω0. Тогда частица начнёт отставать от синхронной, будет получать меньшую энергию от ускоряющего поля, чем синхронная частица, и её частота станет вновь расти.
         Аналогичный процесс происходит и с частицей, отставшей от синхронной и попадающей в ускоряющий промежуток несколько позже, при фазе φ20. Такая частица будет получать от поля меньшую энергию, её частота начнёт расти, и частица будет догонять синхронную.
         Т. о., частоты обращения частиц совершают медленные по сравнению с частотой обращения колебания около значения ω0. Соответственно колеблются фазы частиц около значения φ0, а средняя их фаза является устойчивой: φср = φ0 (отсюда название — фазовая устойчивость, или А.). Поэтому в среднем будет автоматически поддерживаться синхронизм между движением частиц и ускоряющим полем. Одновременно совершают колебания и другие характеристики движения частиц (энергия, радиус орбиты) около их равновесных значений, отвечающих синхронной частице. Эти колебания фазы и связанные с ними колебания радиуса орбиты частиц называются радиально-фазовыми.
         А. действует и в линейных резонансных ускорителях протонов, в которых (в отличие от циклических ускорителей) частота прохождения частицей последовательных ускоряющих промежутков (расположенных по прямой линии) прямо пропорциональна скорости её движения, т. е. увеличивается с ростом энергии. Однако устойчивая синхронная фаза в линейных ускорителях отрицательна — лежит на подъёме ускоряющего электрического напряжения (рис. 2). Тогда при пролёте частицей ускоряющего промежутка поле возрастает, так что отстающая частица (с фазой φ20) получает большую энергию и начинает догонять синхронную частицу, а опережающая (с фазой φ10) — меньшую энергию и также начинает приближаться к синхронной.
         Принцип А. оказал революционизирующее влияние на развитие ускорительной техники. Появилось семейство разнообразных ускорителей, работающих на основе А.: циклические ускорители электронов (Синхротроны) на энергии до 7 Гэв и протонов (Синхрофазотроны, Фазотроны и др.) до энергии 75 Гэв, циклические ускорители с переменной кратностью q (Микротроны), линейные резонансные ускорители протонов на энергии до 70 Мэв. А. отсутствует, когда частота обращения частиц не зависит от их энергии (изохронные циклотроны), а в линейных ускорителях — когда скорость движения частиц приближается к скорости света и практически перестаёт зависеть от энергии (линейные ускорители электронов на энергии выше 10 Мэв).
         Об А. в ускорителях со знакопеременной (сильной) фокусировкой см. Ускорители заряженных частиц.
        
         Лит. см. при статье Ускорители заряженных частиц.
         М. С. Рабинович.
        
        Рис. 1. Синхронная фаза φ0 > 0.
        
        Рис. 2. Синхронная фаза φ0< 0.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Синонимы:

Смотреть что такое "Автофазировка" в других словарях:

  • автофазировка — автофазировка …   Орфографический словарь-справочник

  • АВТОФАЗИРОВКА — (фазовая устойчивость), явление устойчивости движения заряж. ч ц относительно фазы ускоряющего их электрич. поля в резонансных ускорителях (открыто в 1944 45 независимо друг от друга В. И. Векслером и амер. физиком Э. Макмилланом); лежит в основе …   Физическая энциклопедия

  • автофазировка — фазовая устойчивость Словарь русских синонимов. автофазировка сущ., кол во синонимов: 2 • фазировка (2) • …   Словарь синонимов

  • АВТОФАЗИРОВКА — (фазовая устойчивость) заключается в том, что в среднем для большой группы ускоряемых частиц высокой энергии (из за зависимости промежутка времени между последующими ускорениями от полной энергии частицы) автоматически поддерживается синхронизм… …   Большой Энциклопедический словарь

  • автофазировка — автоматическая фазировка Словарь: Новый словарь сокращений русского языка, М.: ЭТС, 1995 …   Словарь сокращений и аббревиатур

  • автофазировка — (фазовая устойчивость), заключается в том, что в среднем для большой группы ускоряемых частиц высокой энергии автоматически поддерживается синхронизм (резонанс) между движением частиц и фазой ускоряющего электрического поля. Автофазировка… …   Энциклопедический словарь

  • автофазировка — fazavimasis statusas T sritis radioelektronika atitikmenys: angl. self phasing; self stabilization of phase vok. selbständige Phasenstabilisierung, f rus. автофазировка, f pranc. stabilisation automatique de phase, f …   Radioelektronikos terminų žodynas

  • автофазировка — autofazuotė statusas T sritis fizika atitikmenys: angl. autophasing vok. Autophasierung, f rus. автофазировка, f pranc. mise en phase automatique, f …   Fizikos terminų žodynas

  • АВТОФАЗИРОВКА — фазовая устойчивость, явление, состоящее в том, что в среднем для большой группы ускоряемых частиц высокой энергии (из за зависимости массы частиц от энергии) автоматически поддерживается синхронизм (резонанс) между движением частиц и ускоряющим… …   Большой энциклопедический политехнический словарь

  • АВТОФАЗИРОВКА — (фазовая устойчивость), заключается в том, что в среднем для большой группы ускоряемых частиц высокой энергии автоматически поддерживается синхронизм (резонанс) между движением частиц и фазой ускоряющего электрич. поля. А. обусловлена… …   Естествознание. Энциклопедический словарь


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»