Колориметр это:

Колориметр
I Колори́метр (от латинского color — цвет и ...метр)
        химический, оптический прибор для измерения концентрации веществ в растворах. Действие К. основано на свойстве окрашенных растворов поглощать проходящий через них свет тем сильнее, чем выше в них концентрация с окрашивающего вещества (см. Колориметрия в аналитической химии). Все измерения с помощью К. производятся в монохроматическом свете того участка спектра, который наиболее сильно поглощается данным веществом в растворе (и слабо — другими компонентами раствора). Поэтому К. снабжаются набором Светофильтров; применение различных светофильтров с узкими спектральными диапазонами пропускаемого света позволяет определять по отдельности концентрации разных компонентов одного и того же раствора.
         К. разделяются на визуальные и объективные (фотоэлектрические). В визуальных К. свет, проходящий через измеряемый раствор, освещает одну часть поля зрения, в то время как на другую часть падает свет, прошедший через раствор того же вещества, концентрация которого известна. Изменяя толщину l слоя одного из сравниваемых растворов или интенсивность I светового потока, наблюдатель добивается, чтобы цветовые тона двух частей поля зрения были неотличимы на глаз, после чего по известным соотношениям между l, I и с (см. Бугера - Ламберта - Бера закон) может быть определена концентрация исследуемого раствора.
         Фотоэлектрические К. обеспечивают большую точность измерений, чем визуальные; в качестве приёмников излучения в них используются Фотоэлементы (селеновые и вакуумные), фотоэлектронные умножители (См. Фотоэлектронный умножитель), фотосопротивления и Фотодиоды. Сила фототока приемников определяется интенсивностью падающего на них света и, следовательно, степенью его поглощения в растворе (тем большей, чем выше концентрация). Помимо фотоэлектрического К. с непосредственным отсчетом силы тока, распространены компенсационные К. (), в которых разность сигналов, соответствующих стандартному и измеряемому растворам, сводится к нулю (компенсируется) электрическим или оптическим компенсатором (например, клином фотометрическим (См. Клин фотометрический)); отсчет в этом случае снимается со шкалы компенсатора. Компенсация позволяет свести к минимуму влияние условий измерений (температуры, нестабильности свойств элементов К.) на их точность. Показания К. не дают сразу значений концентрации исследуемого вещества в растворе — для перехода к ним используют градуировочные графики, полученные при измерении растворов с известными концентрациями.
         Измерения с помощью К. отличаются простотой и быстротой проведения. Точность их во многих случаях не уступает точности других, более сложных методов химического анализа. Нижние границы определяемых концентраций в зависимости от рода вещества составляют от 10-3 до 10-8 моль/л.
        
         Лит.: Булатов М. И., Калининкин И. П., Практическое руководство по фотоколориметрическим и спектрофотометрическим методам анализа, 2 изд., Л., 1968: Физико-химические методы анализа, М., 1968; Пономарева Л. К., Методические разработки по колориметрическим методам анализа, Минск, 1970.
         Д. А. Шкловер.
        Рис. 1. Оптическая схема визуального химического колориметра типа КОЛ-1М. Уравнивание по цвету двух полей, соответствующих измеряемому и стандартному растворам и наблюдаемых в окуляр 6, осуществляется изменением толщины 1 слоя измеряемого раствора при перемещении плунжера (стеклянного столбика) 3, с которым связана шкала прибора. 1 — источник света, 2 и 2' — кюветы с измеряемым и стандартным растворами; 3, 3' — плунжеры; 4 — призма; 5 — сменные цветные светофильтры.
        Рис. 1. Оптическая схема визуального химического колориметра типа КОЛ-1М. Уравнивание по цвету двух полей, соответствующих измеряемому и стандартному растворам и наблюдаемых в окуляр 6, осуществляется изменением толщины 1 слоя измеряемого раствора при перемещении плунжера (стеклянного столбика) 3, с которым связана шкала прибора. 1 — источник света, 2 и 2' — кюветы с измеряемым и стандартным растворами; 3, 3' — плунжеры; 4 — призма; 5 — сменные цветные светофильтры.
        Рис. 2. Принципиальная схема фотоэлектрического компенсационного колориметра типа ФЭК-М. Свет от источника 1 проходит в левом плече прибора (цифры без штрихов) через измеряемый раствор, в правом плече (цифры со штрихами) — через стандартный; разность сигналов селеновых фотоэлементов 9 и 9' регистрируется гальванометром 14. Неградуированные фотометрические клинья 10, 11 служат для установки гальванометра на нуль в отсутствие растворов. Оптическая компенсация, т. е. сведение разности сигналов приёмников 9 и 9' к нулю после установки кювет с растворами 6 и 6', осуществляется щелевой диафрагмой 12 с отсчётным барабаном (шкалой) 13, 2, 2' — конденсоры; 3, 3' — зеркала; 4, 4' — светофильтры; 5, 5' и 7, 7' — линзы; 8, 8' — призмы.
        Рис. 2. Принципиальная схема фотоэлектрического компенсационного колориметра типа ФЭК-М. Свет от источника 1 проходит в левом плече прибора (цифры без штрихов) через измеряемый раствор, в правом плече (цифры со штрихами) — через стандартный; разность сигналов селеновых фотоэлементов 9 и 9' регистрируется гальванометром 14. Неградуированные фотометрические клинья 10, 11 служат для установки гальванометра на нуль в отсутствие растворов. Оптическая компенсация, т. е. сведение разности сигналов приёмников 9 и 9' к нулю после установки кювет с растворами 6 и 6', осуществляется щелевой диафрагмой 12 с отсчётным барабаном (шкалой) 13, 2, 2' — конденсоры; 3, 3' — зеркала; 4, 4' — светофильтры; 5, 5' и 7, 7' — линзы; 8, 8' — призмы.
II Колори́метр
        трёхцветный, прибор для измерения цвета в одной из трёхмерных колориметрических систем, то есть в системе, в которой предполагается, что любой цвет может быть представлен как результат оптического сложения определённых количеств трёх цветов, принимаемых в ней за основные (см. Цветовые измерения).
         В визуальных колориметрах эти количества — так называемые координаты цвета — подбираются наблюдателем так, чтобы получить цвет, неотличимый на глаз от измеряемого цвета Ц. Результаты подбора фиксируются на измерительных шкалах К. В простейшем визуальном К. — диске Максвелла — оптическое смешение основных цветов происходит во времени, при быстром попеременном восприятии их наблюдателем одного за другим. Внешнее кольцо этого диска разделено на 3 сектора. Регулировкой величины каждого сектора, окрашенного в один из основных цветов, добиваются того, чтобы при быстром вращении диска воспринимаемый цвет кольца не отличался от цвета образца, помещаемого в центр диска. Более распространены визуальные К., в которых оптическое смешение осуществляется в пространстве — одновременным освещением белой поверхности тремя световыми потоками различной цветности; вклад в получаемый цвет каждого потока регулируется изменением его интенсивности. Оптическая схема одного из лучших К. этого типа (системы Л. И. Дёмкиной) приведена на.
         Результаты измерений могут быть представлены в виде Ц = к'К + з'З + + с'С, где к', з', c' — считываемые по шкалам координаты Ц в системе основных цветов прибора К, З и С (обычно красного, зелёного и синего). Зная к', з' и c', можно рассчитать координаты и в любой другой трёхмерной колориметрической системе (с др. основными цветами); для этого достаточно знать координаты цветов К, З и С в этой другой системе. Чаще всего К. градуируют для пересчёта результатов измерений в международную систему XYZ.
         Фотоэлектрические колориметры (называют также объективными) составляют другой класс. В проводимых с их помощью измерениях используются соотношения, позволяющие рассчитать координаты цвета измеряемого излучения по его спектральному составу I (λ) (интенсивности излучения как функции длины волны). Эти соотношения представляют собой интегралы от произведений I (λ) на так называемые удельные координаты цвета — известные функции длины волны [в международной системе XYZ это функции x̅(λ), y̅(λ), (λ)]. Фотоэлектрические К. подразделяются на спектроколориметры и приборы с селективными приёмниками. В первых измеряемое излучение разлагается дисперсионной призмой (См. Дисперсионные призмы) (или системой призм) в спектр, «считываемый» фотоэлектрическим приёмником. Сигналы приёмника непрерывно или через равные малые интервалы длин волн умножаются на функции x̅(λ), y̅(λ) и (λ) и интегрируются по всему видимому спектру; результаты интегрирования представляют собой координаты измеряемого излучения. В К. с селективными приёмниками используются три приёмника излучения со светофильтрами или один приёмник, перед которым последовательно вводятся три светофильтра.
         Каждый светофильтр состоит из комбинации цветных стекол; их толщины рассчитываются так, чтобы с максимальной точностью привести спектральные чувствительности фотоэлементов к кривым x̅(λ), , (λ). Если это осуществлено, значения трёх фототоков пропорциональны координатам цвета х, у и z.
         Фотоэлектрические К. различных типов применяются в промышленности для контроля цвета источников света (См. Источники света) (К. типов УФК и УКЛ), светофильтров и отражающих материалов (типа КНО) и экранов цветных и черно-белых телевизоров (типа ТК). Наиболее точные данные о цвете дают спектроколориметры. Высокой точностью измерений отличаются также фотоэлектрические компараторы цвета (типов ЭКЦ и ФКЦШ), в которых измеряемый цвет сравнивается с близким по спектральному составу цветом эталонного образца.
         Лит.: Гуревич М. М., Цвет и его измерение, М. — Л., 1950; фотоэлектрические приборы для цветовых и спектральных измерений, М., 1969 (Светотехнические изделия. в. 10); Wright W. D., The measurement of colour, 2 ed., N. Y., 1958.
         Д. А. Шкловер.
        
        Оптическая схема визуального трёхцветного колориметра системы Л. И. Дёмкиной. Наблюдаемое в окуляр Ок поле зрения разделено (с помощью фотометрического кубика ФК) на две части — одна имеет цвет образца Об, другая — цвет экрана Э, на котором смешиваются основные цвета прибора. Свет от осветителя Ос попадает на Э через диафрагму Д, содержащую три светофильтра (красный К, зелёный З и синий С) и три подвижные заслонки. Изменяя с помощью заслонок площади фильтров, наблюдатель изменяет интенсивности потоков красного, зелёного и синего излучений, добиваясь, чтобы цвет их смеси не отличался от цвета образца. И — лампа осветителя; Л — линза; А — источник, освещающий образец; З1, З2, З3 — зеркала; ДК и Ф — ослабляющие фильтры.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Синонимы:

Смотреть что такое "Колориметр" в других словарях:

  • колориметр — колориметр …   Орфографический словарь-справочник

  • КОЛОРИМЕТР — (от лат. color цвет и греч. metreo измеряю).К. трёхцветный прибор для измерения цвета в одной из трёхмерных колориметрнч. систем, в к рой предполагается, что любой цвет может быть представлен как результат оптич. сложения (смешения) определ. кол… …   Физическая энциклопедия

  • КОЛОРИМЕТР — прибор для измерения цвета …   Большой Энциклопедический словарь

  • колориметр — прибор для определения концентрации веществ в растворах. Позволяет устанавливать оптическую плотность окрашенных растворов, которая зависит от концентрации в них вещества. С известными ограничениями К. используются в микробиол. практике для… …   Словарь микробиологии

  • колориметр — сущ., кол во синонимов: 6 • ионоколориметр (1) • микроколориметр (1) • тинтометр …   Словарь синонимов

  • КОЛОРИМЕТР — прибор для измерения интенсивности окраски (цвета); их разделяют на визуальные и объективные (в основном фотоэлектрические). В визуальных К. цвег измеряется путем сравнения окраски анализируемого раствора со стандартным и выравнивания… …   Геологическая энциклопедия

  • колориметр — а, м. colorimètre m., нем. Kolorimeter <лат. color цвет + metreo мерю. В химии оптический прибор для определения концентрации веществ путем сравнения интенсивности окрасок исследуемого и стандартного, взятого за образец раствора. БАС 1. || В… …   Исторический словарь галлицизмов русского языка

  • колориметр — Прибор для определения концентрации веществ в окрашенных растворах [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN colorimeter …   Справочник технического переводчика

  • колориметр — colorimeter Kolorimeter прилад для визначення характеристик кольору. Застосовується, зокрема, в методах дослідження гірських порід, вугілля тощо, напр., у методі вибіркової сорбції барвника (метод А.С.Колбановської) …   Гірничий енциклопедичний словник

  • Колориметр — (от нем. kolorimeter < лат. color цвет + греч. metreo мерю) оптический прибор для измерения цвета. Количественно выражается совокупностью трех значений (в относительных единицах) цветоделенных лучистых потоков (основных цветов… …   Реклама и полиграфия

  • КОЛОРИМЕТР — оптический прибор для определения и количественной характеристики цвета источников света, красок, телеэкранов или концентрации веществ в растворах. Различают приборы 1 го типа, действие которых основано на измерении интенсивности световых потоков …   Большая политехническая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»