Динамика это:

Динамика
I Дина́мика (от греч. dynamikós — сильный, от dýnamis — сила)
        раздел механики (См. Механика), посвящённый изучению движения материальных тел под действием приложенных к ним сил. В основе Д. лежат три закона И. Ньютона (см. Ньютона законы механики), из которых как следствия получаются все уравнения и теоремы, необходимые для решения задач Д.
         Согласно первому закону (закону инерции) материальная точка, на которую не действуют силы, находится в состоянии покоя или равномерного прямолинейного движения; изменить это состояние может только действие силы. Второй закон, являющийся основным законом Д., устанавливает, что при действии силы F материальная точка (или поступательно движущееся тело) с массой m получает ускорение w, определяемое равенством
         mw = F. (1)
        Третьим законом является закон о равенстве действия и противодействия (см. Действия и противодействия закон). Когда к телу приложено несколько сил, F в уравнении (1) означает их равнодействующую. Этот результат следует из закона независимости действия сил, согласно которому при действии на тело нескольких сил каждая из них сообщает телу такое же ускорение, какое она сообщила бы, если бы действовала одна.
         В Д. рассматриваются два типа задач, решения которых для материальной точки (или поступательно движущегося тела) находятся с помощью уравнения (1). Задачи первого типа состоят в том, чтобы, зная движение тела, определить действующие на него силы. Классическим примером решения такой задачи является открытие Ньютоном закона всемирного тяготения: зная установленные И. Кеплером на основании обработки результатов наблюдений законы движения планет (см. Кеплера законы), Ньютон показал, что это движение происходит под действием силы, обратно пропорциональной квадрату расстояния между планетой и Солнцем. В технике такие задачи возникают при определении сил, с которыми движущиеся тела действуют на связи, т. е. др. тела, ограничивающие их движение (см. Связи механические), например при определении сил давления колёс на рельсы, а также при нахождении внутренних усилий в различных деталях машин и механизмов, когда законы движения этих машин (механизмов) известны.
         Задачи второго типа, являющиеся в Д. основными, состоят в том, чтобы, зная действующие на тело силы, определить закон его движения. При решении этих задач необходимо ещё знать так называемые начальные условия, т. е. положение и скорость тела в момент начала его движения под действием заданных сил. Примеры таких задач: зная величину и направление скорости снаряда в момент его вылета из канала ствола (начальная скорость) и действующие на снаряд при его движении силу тяжести и силу сопротивления воздуха, найти закон движения снаряда, в частности его траекторию, горизонтальную дальность полёта, время движения до цели и др.; зная скорость автомобиля в момент начала торможения и силу торможения, найти время движения и путь до остановки; зная силу упругости рессор и вес кузова вагона, определить закон его колебаний, в частности частоту этих колебаний, и многие др.
         Задачи Д. для твёрдого тела (при его непоступательном движении) и различных механических систем решаются с помощью уравнений, которые также получаются как следствия второго закона Д., применяемого к отдельным частицам системы или тела; при этом ещё учитывается равенство сил взаимодействия между этими частицами (третий закон Д.). В частности, таким путём для твёрдого тела, вращающегося вокруг неподвижной оси z, получается уравнение:
         lzε = Mz,
        где IzМомент инерции тела относительно оси вращения, ε — угловое ускорение тела, MzВращающий момент, равный сумме моментов действующих сил относительно оси вращения. Это уравнение позволяет, зная закон вращения, т. е. зависимость ε от времени, найти вращающий момент (задача первого типа) или, зная вращающий момент и начальные условия, т. е. начальное положение тела и начальную угловую скорость, найти закон вращения (задача второго типа).
         При изучении движения механических систем часто применяют так называемые общие теоремы Д., которые также могут быть получены как следствия 2-го и 3-го законов Д. К ним относятся теоремы о движении центра масс (или центра инерции) и об изменении количества движения (См. Количество движения), момента количества движения (См. Момент количества движения) и кинетической энергии системы. Иной путь решения задач Д. связан с использованием вместо 2-го закона Д. др. принципов механики (см. Д' Аламбера принцип (См. Д'Аламбера принцип), Д' Аламбера — Лагранжа принцип (См. Д'Аламбера - Лагранжа принцип), Вариационные принципы механики) и получаемых с их помощью уравнений движения, в частности Лагранжа уравнений (См. Лагранжа уравнения) механики.
         Уравнение (1) и все следствия из него справедливы только при изучении движения по отношению к так называемой инерциальной системе отсчёта (См. Инерциальная система отсчёта), которой для движений внутри солнечной системы с высокой степенью точности является звёздная система (система отсчёта с началом в центре Солнца и осями, направленными на удалённые звёзды), а при решении большинства инженерных задач — система отсчёта, связанная с Землёй. При изучении движения по отношению к неинерциальным системам отсчёта, т. е. системам, связанным с ускоренно движущимися или вращающимися телами, уравнение движения можно также составлять в виде (1), если только к силе F прибавить так называемую переносную и Кориолиса силы (См. Кориолиса сила) инерции (см. Относительное движение). Такие задачи возникают при изучении влияния вращения Земли на движение тел по отношению к земной поверхности, а также при изучении движения различных приборов и устройств, установленных на движущихся объектах (судах, самолётах, ракетах и др.).
         Помимо общих методов изучения движения тел под действием сил, в Д. рассматриваются специальные задачи: теория Гироскопа, теория механических колебаний (См. Колебания), теория устойчивости движения (См. Устойчивость движения), теория Удара, механика тела переменной массы (См. Механика тел переменной массы) и др. С помощью законов Д. изучается также движение сплошной среды, т. е. упруго и пластически деформируемых тел, жидкостей и газов (см. Упругости теория, Пластичности теория, Гидроаэромеханика, Газовая динамика). Наконец, в результате применения методов Д. к изучению движения конкретных объектов возник ряд специальных дисциплин: Небесная механика, внешняя Баллистика, динамика паровоза, автомобиля, самолёта, Динамика ракет и т.п.
         Методы Д., базирующейся на законах Ньютона и называются классической Д., описывают движения самых различных объектов (от молекул до небесных тел), происходящие со скоростями от долей мм/сек до десятков км/сек (скорости ракет и небесных тел), и имеют огромное значение для современного естествознания и техники. Однако эти методы перестают быть справедливыми для движения объектов очень малых размеров (элементарные частицы) и при движениях со скоростями, близкими к скорости света; такие движения подчиняются др. законам (см. Квантовая механика, Относительности теория).
         Лит. см. при ст. Механика.
         С. М. Тарг.
II Дина́мика
        в музыке, совокупность явлений, связанных с применением различных степеней силы звучания, громкости. Основные градации силы звучания: piano (в нотах сокращённо р) — тихо, слабо и forte (f) — громко, сильно. Производные от piano в сторону ослабления: pianissimo (рр) — очень тихо, piano-pianissimo (ppp) — чрезвычайно тихо и т.д. (до ррррр); от forte в сторону усиления: fortissimo (ff) — очень громко, forte-fortissimo (fff) — чрезвычайно громко и т.д. (до fffff). Применяются также обозначения mezzo piano (mp) — умеренно тихо и mezzo forte (mf) — умеренно громко. Все эти обозначения относятся к более или менее протяжённым музыкальным отрывкам, в которых выдерживается в общем единая и неизменная степень громкости звучания. Внутри таких отрывков нередко выделяются по громкости отдельные звуки, что обозначается терминами forzato, sforzato и др. (см. Акцент). В музыке широко используется и постепенное усиление или ослабление звучания. Усиление звучания обозначается термином crescendo (cresc, знак
         Градации динамики и их обозначения имеют в музыке лишь относительное значение; абсолютная величина громкости зависит от многих факторов, в том числе от типа инструмента, при ансамблевом исполнении — от количества партий и числа исполнителей на каждую партию, а также от акустических свойств помещения. Так, по абсолютному значению piano на трубе гораздо громче, чем forte вокалиста, громкость звучания piano у целого хора значительно выше, чем у отдельного его участника, и т.п. Абсолютные величины громкости измеряются в акустике и выражаются в фонах (см. Громкость звука).

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Синонимы:

Антонимы:

Смотреть что такое "Динамика" в других словарях:

  • ДИНАМИКА — (греч., от dynamis сила). 1) часть механики, имеющая предметом своим законы движения тел. 2) учение об изменяемости какого нибудь явления под влиянием тех или других сил; противоп. статике. Словарь иностранных слов, вошедших в состав русского… …   Словарь иностранных слов русского языка

  • динамика — и, ж. dynamique <гр. физ. Механика имеет две части: Статику и Динамику. ПК 1769 354. Наука, которая разсуждает о движении, вообще называется .. Динамика. Эйлер ПП 1 234. // Сл. 18 6 133. Ход развития, движения чего л. Динамика грузооборота.… …   Исторический словарь галлицизмов русского языка

  • ДИНАМИКА — (от греч. dynamis сила), раздел механики, посвящённый изучению движения матер. тел под действием приложенных к ним сил. В основе Д. лежат Ньютона законы механики, из к рых получаются все ур ния и теоремы, необходимые для решения задач Д. Согласно …   Физическая энциклопедия

  • ДИНАМИКА — ДИНАМИКА, динамики, мн. нет, жен. (от греч. dynamikos действующий). 1. Отдел механики, изучающий законы движения тел в зависимости от действующих на них сил (мех.). 2. Ход развития, изменения какого нибудь явления под влиянием действующих на него …   Толковый словарь Ушакова

  • динамика — кинетика Словарь русских синонимов. динамика сущ., кол во синонимов: 18 • биодинамика (1) • …   Словарь синонимов

  • ДИНАМИКА — (dynamics) Изучение того, как меняется экономика с течением времени. Изменения в экономике могут происходить под воздействием внешних (экзогенных) и внутренних (эндогенных) факторов, отражающих реакцию людей, фирм и государственных органов на… …   Экономический словарь

  • динамика — Раздел механики, в котором изучаются движения механических систем под действием сил. [Сборник рекомендуемых терминов. Выпуск 102. Теоретическая механика. Академия наук СССР. Комитет научно технической терминологии. 1984 г.] Тематики теоретическая …   Справочник технического переводчика

  • ДИНАМИКА — (от греческого dynamis сила), раздел механики. Изучает движение тел под действием приложенных к ним сил. Основа динамики Ньютона законы механики, сформулированные в конце 17 в …   Современная энциклопедия

  • ДИНАМИКА — в музыке различной степени силы звучания, громкости и их изменения. Обозначаются итальянскими терминами: пиано (piano, сокр. p) тихо; форте (forte, сокр. f) громко; крещендо (crescendo) постепенно усиливая; диминуэндо (diminuendo) постепенно… …   Большой Энциклопедический словарь

  • ДИНАМИКА — (от греч. dynamis сила) раздел механики, в котором изучается движение тел под действием приложенных к ним сил. Основа динамики Ньютона законы механики …   Большой Энциклопедический словарь

  • ДИНАМИКА — ДИНАМИКА, отрасль МЕХАНИКИ, которая изучает движение предметов. Основными разделами ее являются кинематика, изучающая движение безотносительно к его причинам, и КИНЕТИКА, принимающая в расчет силы, вызывающие движение. см. также ИНЕРЦИЯ, МОМЕНТ,… …   Научно-технический энциклопедический словарь

Книги

Другие книги по запросу «Динамика» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»