Штурма-Лиувилля задача это:

Штурма-Лиувилля задача
Штурма ‒ Лиувилля задача, задача о нахождении отличных от нуля решений дифференциального уравнения

-[p (x) y']' + q (x) y = ly, (1)

удовлетворяющих граничным условиям вида

A1y (a) + B1y'(a) =

0, А2у (b) + B2y'(b) = 0

(т. н. собственных функций), а также о нахождении значений параметра l (собственных значений), при которых существуют такие решения. При некоторых условиях на коэффициенты р (х), q (x) Ш.‒Л. з. можно свести к рассмотрению аналогичной задачи для уравнения вида

-y" + q (x) y = ly. (2)

Была впервые (1837‒41) исследована Ж. Лиувиллем и Ж. Ш. Ф. Штурмом.

Решение некоторых видов уравнений математической физики методом Фурье приводит к Ш.‒ Л. з. Например, задача о колебаниях однородной струны, закрепленной на концах, приводит к Ш.‒ Л. з. для уравнения ‒у" = lу с граничными условиями y (0) = y (p) = 0. В этом случае существует бесконечная последовательность значений 12, 22,..., n2,..., которым соответствуют собственные функции sinnx, образующие на отрезке [0, p] полную ортогональную систему функций (см. Ортогональная система функций). Аналогично обстоит дело и в общем случае, возникающем, например, при изучении распространения тепла в неоднородном стержне и т.д. И здесь, если функция q (x) в уравнении (2) непрерывна и действительна на отрезке [a, b], a A1, B1, A2, B2 действительные числа, существует возрастающая последовательность действительных собственных значений l1,..., lп,..., стремящаяся к бесконечности, причём каждому из lп соответствует определённая с точностью до постоянного множителя собственная функция jп (х), имеющая n нулей на участке а < х < b. Функции jп (х) образуют на [а, b] полную ортогональную систему функций [для уравнения (1) имеет место ортогональность с весом р (х)]. Полнота такой системы функций была доказана В. А. Стекловым в 1896. Весьма общие теоремы о разложении функций в ряды Фурье по системе jп (х) доказал Д. Гильберт (1904) с помощью теории линейных интегральных уравнений. При возрастании п собственные значения и собственные функции Ш.¾ Л. з. для уравнения (2) стремятся к собственным значениям и собственным функциям для уравнения ‒у" = lу при тех же граничных условиях. Большинство встречающихся в математике ортогональных систем функций, например, многочлены Лежандра, многочлены Эрмита, являются системами собственных функций некоторых Ш.‒ Л. з.

Иногда Ш.‒ Л. з. называют краевую задачу для уравнения (1) при более общих краевых условиях:

aiy (а) + biy'(а) + giy (b) + diy'(b) = 0, i = 1, 2,

где ai, bi, gi, di ‒ постоянные числа. Среди краевых условий такого вида наиболее важными являются у (а) = у (b), y'(a)=y'(b) (периодические условия) и у (а)= ‒у (b), у'(а) = ‒y'(b) (полупериодические условия).

Многие задачи математической физики (например, задача о распространении тепла в бесконечном неоднородном стержне) приводит к Ш.‒ Л. з. на полуоси или на всей оси. В 1-м случае рассматриваются решения уравнения (2), удовлетворяющие условию A1y (0)+B1y'(0) = 0; вместо последовательности собственных функций здесь появляется совокупность собственных функций j(х, l), зависящих от непрерывно изменяющегося параметра l. Вместо разложения в ряды Фурье рассматриваются разложения вида

,

где r(l) некоторая неубывающая функция. Эти разложения аналогичны Фурье интегралу. При этом


и

.

Аналогичные факты имеют место и для Ш.‒ Л. з. на всей оси. Для некоторых задач математической физики важное значение имеет обратная Ш.‒Л. з., т. е. задача о восстановлении дифференциального уравнения по функции r(l). Эта задача была поставлена в частном случае В. А. Амбарцумяном, а в более общем случае швед. математиком Г. Бортом и решена М. Г. Крейном, И. М. Гельфандом и Б. М. Левитаном.

Ш.‒ Л. з. возникает также в некоторых вопросах квантовой механики и вариационного исчисления.


Лит.: Курант Р., Гильберт Д., Методы математической физики, пер. с нем., 3 изд., т. 1, М.‒ Л., 1951; Сансоне Дж., Обыкновенные дифференциальные уравнения, пер. с итал., т. 1, М., 1953; Левитан Б. М., Разложение по собственным функциям дифференциальных уравнений второго порядка, М.‒ Л., 1950.


Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Штурма-Лиувилля задача" в других словарях:

  • ШТУРМА -ЛИУВИЛЛЯ ЗАДАЧА — задача, порождённая на конечном или бесконечном интервале ( а, b) изменения переменной c ур нием и нек рыми граничными условиями, где положительны, действительна, а комплексный параметр. Начало глубокому изучению этой задачи положили Ш. Штурм (Ch …   Физическая энциклопедия

  • ШТУРМА - ЛИУВИЛЛЯ ЗАДАЧА — задача, порожденная на конечном или бесконечном интервале ( а, b) изменения переменной хуравнением и нек рыми граничными условиями, где р(х) и r(х) положительны, l(х)действительна, а комплексный параметр. Начало глубокому изучению этой задачи… …   Математическая энциклопедия

  • Штурма - Лиувилля задача —         задача о нахождении отличных от нуля решений дифференциального уравнения          [p (x) y ] + q (x) y = λy, (1)          удовлетворяющих граничным условиям вида          A1y (a) + B1y (a) = 0, А2у (b) + B2y (b) = 0          (т. н.… …   Большая советская энциклопедия

  • ШТУРМА - ЛИУВИЛЛЯ ОБРАТНАЯ ЗАДАЧА — задача, в к рой требуется восстановить функцию (потенциал) q(x)по тем или иным спектральным характеристикам оператора А, порождённого дифференциальным выражением l[у] = y +q(x)yи нек рыми граничными условиями в гильбертовом пространстве L2(a, b) …   Математическая энциклопедия

  • Задача Штурма — Лиувилля — Задача Штурма  Лиувилля состоит в отыскании нетривиальных решений на промежутке однородного уравнения удовлетворяющих однородным граничным условиям и значений параметра …   Википедия

  • Задача Штурма-Лиувилля — Задача Штурма  Лиувилля состоит в отыскании нетривиальных решений на промежутке однородного уравнения L[y] + λρ(x)y(x) = 0, удовлетворяющих однородным граничным условиям и значений параметра λ, при которых такие удовлетворяющие указанным… …   Википедия

  • Задача Штурма — Задача Штурма  Лиувилля состоит в отыскании нетривиальных (т.е. отличных от тождественного нуля) решений на промежутке однородного уравнения удовлетворяющих однородным граничным условиям и значений параметра …   Википедия

  • Краевая задача — Краевая задача  дифференциальное уравнение (система дифференциальных уравнений) с заданными линейными соотношениями между значениями искомых функций на начале и конце интервала интегрирования. Решение краевой задачи ищется в виде линейной… …   Википедия

  • СПЕКТРАЛЬНАЯ ТЕОРИЯ — дифференциальных операторов раздел общей спектральной теории операторов, к рый изучает спектральные свойства дифференциальных операторов в различных пространствах функций, особенно в гильбертовых пространствах измеримых функций. Пусть область в… …   Математическая энциклопедия

  • Ортогональная система функций —         система функций {(φn (x)}, n = 1, 2,..., ортогональных с весом ρ (х) на отрезке [а, b], т. е. таких, что                   Примеры. Тригонометрическая система 1, cos nx, sin nx; n = 1, 2,..., О. с. ф. с весом 1 на отрезке [ π, π]. Бесселя …   Большая советская энциклопедия

Книги

Другие книги по запросу «Штурма-Лиувилля задача» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»