Фотохимия это:

Фотохимия
        раздел химии, в котором изучаются Реакции химические, происходящие под действием света. Ф. тесно связана с оптикой (См. Оптика) и оптическими излучениями (См. Оптическое излучение). Первые фотохимические закономерности были установлены в 19 в. (см. Гротгуса закон, Бунзена – Роско закон (См. Бунзена - Роско закон)). Как самостоятельная область науки Ф. оформилась в 1-й трети 20 в., после открытия Эйнштейна закона, ставшего основным в Ф. Молекула вещества при поглощении кванта света переходит из основного в возбуждённое состояние, в котором она и вступает в химическую реакцию. Продукты этой первичной реакции (собственно фотохимической) часто участвуют в различных вторичных реакциях (т. н. темновые реакции), приводящих к образованию конечных продуктов. С этой точки зрения Ф. можно определить как химию возбуждённых молекул, образовавшихся при поглощении квантов света. Часто более или менее значительная часть возбуждённых молекул не вступает в фотохимическую реакцию, а возвращается в основное состояние в результате различного рода фотофизических процессов дезактивации. В ряде случаев эти процессы могут сопровождаться испусканием кванта света (флуоресценция или фосфоресценция). Отношение числа молекул, вступивших в фотохимическую реакцию, к числу поглощённых квантов света называются квантовым выходом фотохимической реакции. Квантовый выход первичной реакции не может быть больше единицы; обычно эта величина значительно меньше единицы из-за эффективной дезактивации. Вследствие же темновых реакций общий квантовый выход может быть значительно больше единицы.
         Наиболее типичная фотохимическая реакция в газовой фазе – диссоциация молекул с образованием атомов и радикалов. Так, при действии коротковолнового ультрафиолетового (УФ) излучения, которому подвергается, например, кислород, образующиеся возбуждённые молекулы O2* диссоциируют на атомы:
         O2 + hν O*2, O*2 → O + O.
         Эти атомы вступают во вторичную реакцию с O2, образуя озон: O + O2 → O3.
         Такие процессы происходят, например, в верхних слоях атмосферы под действием излучения Солнца (см. Озон в атмосфере).
         При освещении смеси хлора с насыщенными углеводородами (См. Насыщенные углеводороды) (RH, где R – алкил) происходит хлорирование последних. Первичная реакция – диссоциация молекулы хлора на атомы, за ней следует цепная реакция (См. Цепные реакции) образования хлор углеводородов:
         Cl2 + hν
         Cl + RH → HCl + R
         R + Cl2 → RCl + Cl и т.д.
         Общий квантовый выход этой цепной реакции значительно больше единицы.
         При освещении ртутной лампой смеси паров ртути с водородом свет поглощается только атомами ртути. Последние, переходя в возбуждённое состояние, вызывают диссоциацию молекул водорода:
         Hg* + H2 → Hg + H + H.
         Это пример сенсибилизированной фотохимической реакции. Под действием кванта света, обладающего достаточно высокой энергией, молекулы превращаются в ионы. Этот процесс, называемый фотоионизацией, удобно наблюдать с помощью масс-спектрометра.
         Простейший фотохимический процесс в жидкой фазе – перенос электрона, т. е. вызванная светом окислительно-восстановительная реакция. Например, при действии УФ света на водный раствор, содержащий ионы Fe2 +, Cr2 +, V2 + и др., электрон переходит от возбуждённого иона к молекуле воды, например:
         (Fe2 +)* + H2O → Fe3 + + OH- + Н +.
         Вторичные реакции приводят к образованию молекулы водорода. Перенос электрона, который может происходить при поглощении видимого света, характерен для многих красителей. Фотоперенос электрона с участием молекулы хлорофилла представляет собой первичный акт Фотосинтеза – сложного фотобиологического процесса, происходящего в зелёном листе под действием солнечного света.
         В жидкой фазе молекулы органических соединений с кратными связями и ароматическими кольцами могут участвовать в разнообразных темновых реакциях. Кроме разрыва связей, приводящего к образованию радикалов и бирадикалов (например, карбенов (См. Карбены)), а также гетеролитических реакций замещения, известны многочисленные фотохимические процессы изомеризации (См. Изомеризация), перегруппировок, образования циклов и др. Существуют органические соединения, которые под действием УФ света изомеризуются и приобретают окраску, а при освещении видимым светом снова превращаются в исходные бесцветные соединения. Это явление, получившее название фотохромии, – частный случай обратимых фотохимических превращений.
         Задача изучения механизма фотохимических реакций весьма сложна. Поглощение кванта света и образование возбуждённой молекулы происходят за время порядка 10-15сек. Для органических молекул с кратными связями и ароматическими кольцами, представляющих для Ф. наибольший интерес, существуют два типа возбуждённых состояний, которые различаются величиной суммарного спина молекулы. Последний может быть равен нулю (в основном состоянии) или единице. Эти состояния называются соответственно синглетными и триплетными. В синглетное возбуждённое состояние молекула переходит непосредственно при поглощении кванта света. Переход из синглетного в триплетное состояние происходит в результате фотофизического процесса. Время жизни молекулы в возбуждённом синглетном состоянии составляет Фотохимия 10-8 сек; в триплетном состоянии – от 10-5–10-4 сек (жидкие среды) до 20 сек (жёсткие среды, например твёрдые полимеры). Поэтому многие органические молекулы вступают в химические реакции именно в триплетном состоянии. По этой же причине концентрация молекул в этом состоянии может стать столь значительной, что молекулы начинают поглощать свет, переходя в высоковозбуждённое состояние, в котором они вступают в т. н. двухквантовые реакции. Возбуждённая молекула А* часто образует комплекс с невозбуждённой молекулой А или с молекулой В. Такие комплексы, существующие только в возбуждённом состоянии, называются соответственно эксимерами (AA)* или эксиплексами (AB)*. Эксиплексы часто являются предшественниками первичной химической реакции. Первичные продукты фотохимической реакции – радикалы, ионы, ион-радикалы и электроны – быстро вступают в дальнейшие темновые реакции за время, не превышающее обычно 10-3 сек.
         Один из наиболее эффективных методов исследования механизма фотохимических реакций – импульсный Фотолиз, сущность которого заключается в создании высокой концентрации возбуждённых молекул путём освещения реакционной смеси кратковременной, но мощной вспышкой света. Возникающие при этом короткоживущие частицы (точнее – возбуждённые состояния и названные выше первичные продукты фотохимической реакции) обнаруживаются по поглощению ими «зондирующего» луча. Это поглощение и его изменение во времени регистрируется при помощи фотоумножителя и осциллографа. Таким методом можно определить как спектр поглощения промежуточной частицы (и тем самым идентифицировать эту частицу), так и кинетику её образования и исчезновения. При этом применяются лазерные импульсы продолжительностью 10-8 сек и даже 10-11–10-12сек, что позволяет исследовать самые ранние стадии фотохимического процесса.
         Область практического приложения Ф. обширна. Разрабатываются способы химического синтеза на основе фотохимических реакций (см. Фотохимический реактор, Солнечная фотосинтетическая установка). Нашли применение, в частности для записи информации, фотохромные соединения. С применением фотохимических процессов получают рельефные изображения для микроэлектроники (См. Микроэлектроника), печатные формы для полиграфии (см. также Фотолитография). Практическое значение имеет фотохимическое хлорирование (главным образом насыщенных углеводородов). Важнейшая область практического применения Ф. – Фотография. Помимо фотографического процесса, основанного на фотохимическом разложении галогенидов серебра (главным образом AgBr), всё большее значение приобретают различные методы несеребряной фотографии; например, фотохимическое разложение диазосоединений (См. Диазосоединения) лежит в основе диазотипии (См. Диазотипия).
        
         Лит.: Турро Н. Д., Молекулярная фотохимия, пер. с англ., М., 1967; Теренин А. Н., Фотоника молекул красителей и родственных органических соединений, Л., 1967; Калверт Д. Д., Питтс Д. Н., Фотохимия, пер. с англ., М., 1968; Багдасарьян Х. С., Двухквантовая фотохимия, М., 1976.
         Х. С. Багдасарьян.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Синонимы:

Смотреть что такое "Фотохимия" в других словарях:

  • фотохимия — фотохимия …   Орфографический словарь-справочник

  • ФОТОХИМИЯ — Учение о химическом действии световых лучей. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ФОТОХИМИЯ исследование химического действия лучей света. Полный словарь иностранных слов, вошедших в употребление в… …   Словарь иностранных слов русского языка

  • ФОТОХИМИЯ — изучает реакции, возбуждаемые светом. Важнейший природный фотохимический процесс фотосинтез. Основные области практического использования фотохимии фотография, изготовление печатных форм и микросхем методами фотолитографии, фотохимический синтез… …   Большой Энциклопедический словарь

  • ФОТОХИМИЯ — ФОТОХИМИЯ, раздел химии, в котором изучаются фотохимические реакции, вызываемые действием СВЕТА или УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ, а также реакции, при которых выделяется свет. Среди примеров таких реакций можно назвать ФОТОГРАФИЮ, ФОТОСИНТЕЗ и… …   Научно-технический энциклопедический словарь

  • ФОТОХИМИЯ — ФОТОХИМИЯ, фотохимии, мн. нет, жен. (научн.). Отдел химии, изучающий химическое действие световых лучей. см. фото… во 2 знач. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • фотохимия — сущ., кол во синонимов: 1 • химия (43) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • фотохимия — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN photochemistry …   Справочник технического переводчика

  • ФОТОХИМИЯ — раздел (см.), изучающий хим. явления, происходящие под действием света …   Большая политехническая энциклопедия

  • ФОТОХИМИЯ — отрасль химии, занимающаяся изучением взаимодействий света с веществом. Эти взаимодействия могут сопровождаться химическими превращениями вещества, иногда с испусканием света. Предметом изучения фотохимии служат и некоторые физические процессы,… …   Энциклопедия Кольера

  • Фотохимия — свет Фотохимия  часть химии высоких энергий, раздел физической химии изучает химические превращения (химия возбужденных состояний молекул, фотохимические реакции), протекающие под действием …   Википедия

Книги

Другие книги по запросу «Фотохимия» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»