Фотопроводимость это:

Фотопроводимость
        фоторезистивный эффект, увеличение электропроводности полупроводника (См. Полупроводники) под действием электромагнитного излучения. Впервые Ф. наблюдалась в Se У. Смитом (США) в 1873. Обычно Ф. обусловлена увеличением концентрации носителей тока под действием света (концентрационная Ф.). Она возникает в результате нескольких процессов: фотоны «вырывают» электроны из валентной зоны и «забрасывают» их в зону проводимости (рис. 1), при этом одновременно возрастает число электронов проводимости и дырок (собственная Ф.); электроны из заполненной зоны забрасываются на свободные примесные уровни – возрастает число дырок (дырочная примесная Ф.); электроны забрасываются с примесных уровней в зону проводимости (электронная примесная Ф.). Возможно комбинированное возбуждение Ф. «собственным» и «примесным» светом: «собственное» возбуждение в результате последующих процессов захвата носителей приводит к заполнению примесных центров и, следовательно, к появлению примесной Ф. (индуцированная примесная Ф.). Концентрационная Ф. может возникать только при возбуждении достаточно коротковолновым излучением, когда энергия фотонов превышает либо ширину запрещенной зоны (в случае собственной и индуцированной Ф.), либо расстояние между одной из зон и примесным уровнем (в случае электронной или дырочной примесной Ф.).
         В той или иной степени Ф. обладают все неметаллические твёрдые тела. Наиболее изучена и широко применяется в технике Ф. полупроводников Ge, Si, Se, CdS, CdSe, InSb, GaAs, PbS и др. Величина концентрационной Ф. пропорциональна квантовому выходу η (отношению числа образующихся носителей к общему числу поглощённых фотонов) и времени жизни неравновесных (избыточных) носителей, возбуждаемых светом (фотоносителей). При освещении видимым светом η обычно меньше 1 из-за «конкурирующих» процессов, приводящих к поглощению света, но не связанных с образованием фотоносителей (возбуждение экситонов, примесных атомов, колебаний кристаллической решётки (См. Колебания кристаллической решётки) и др.). При облучении вещества ультрафиолетовым или более жёстким излучением η > 1, т.к. энергия фотона достаточно велика, чтобы не только вырвать электрон из заполненной зоны, но и сообщить ему кинетическую энергию, достаточную для ударной ионизации (См. Ионизация). Время жизни носителя (т. е. время, которое он в среднем проводит в свободном состоянии) определяется процессами рекомбинации. При прямой (межзонной) рекомбинации фотоэлектрон сразу переходит из зоны проводимости в валентную зону. В случае рекомбинации через примесные центры электрон сначала захватывается примесным центром, а затем попадает в валентную зону. В зависимости от структуры материала, степени его чистоты и температуры время жизни может меняться в пределах от долей сек до 10-8 сек.
         Зависимость Ф. от частоты излучения определяется спектром поглощения полупроводника. По мере увеличения коэффициента поглощения Ф. сначала достигает максимума, а затем падает. Спад Ф. объясняется тем, что при большом коэффициенте поглощения весь свет поглощается в поверхностном слое проводника, где очень велика скорость рекомбинации носителей (поверхностная рекомбинация, рис. 2).
         Возможны и др. виды Ф., не связанные с изменением концентрации свободных носителей. Так, при поглощении свободными носителями длинноволнового электромагнитного излучения, не вызывающего межзонных переходов и ионизации примесных центров, происходит увеличение энергии («разогрев») носителей, что приводит к изменению их подвижности и, следовательно, к увеличению электропроводности. Такая подвижностная Ф. убывает при высоких частотах и перестаёт зависеть от частоты при низких частотах. Изменение подвижности под действием излучения может быть обусловлено не только увеличением энергии носителей, но и влиянием излучения на процессы рассеяния электронов кристаллической решёткой.
         Изучение Ф. – один из наиболее эффективных способов исследования свойств твёрдых тел (См. Твёрдое тело). Явление Ф. используется для создания Фоторезисторов, чувствительных и малоинерционных приёмников излучения (См. Приёмники излучения) в очень широком диапазоне длин волн – от γ-лучей до диапазона сверхвысоких частот (См. Сверхвысокие частоты).
        
         Лит.: Рывкин С. М., Фотоэлектрические явления в полупроводниках, М., 1963; Стильбанс Л. С., Физика полупроводников, М., 1967; см. также лит. при ст. Полупроводники.
         Э. М. Эпштейн.
        Рис. 1. к ст. Фотопроводимость.
        Рис. 1. к ст. Фотопроводимость.
        Рис. 2. Характерный вид спектра собственной фотопроводимости. Резкий спад в длинноволновой области отвечает т. н. краю поглощения — выключению собственного поглощения, когда энергия фотона становится меньше ширины запрещенной зоны; плавный спад в области малых длин волн обусловлен поглощением света у поверхности.
        Рис. 2. Характерный вид спектра собственной фотопроводимости. Резкий спад в длинноволновой области отвечает т. н. краю поглощения — выключению собственного поглощения, когда энергия фотона становится меньше ширины запрещенной зоны; плавный спад в области малых длин волн обусловлен поглощением света у поверхности.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Фотопроводимость" в других словарях:

  • фотопроводимость — фотопроводимость …   Орфографический словарь-справочник

  • ФОТОПРОВОДИМОСТЬ — фоторезистивный эффект, увеличение электропроводности полупроводника под действием электромагн. излучения. Впервые Ф. наблюдалась в Se У. Смитом (США) в 1873. Обычно Ф. обусловлена увеличением концентрации подвижных носителей заряда под действием …   Физическая энциклопедия

  • фотопроводимость — Электропроводность полупроводника, обусловленная фоторезистивным эффектом. [ГОСТ 22622 77] фотопроводимость Свойство вещества изменять свою электропроводность под действием оптического излучения [ГОСТ 21934 83] фотопроводимость Изменение… …   Справочник технического переводчика

  • ФОТОПРОВОДИМОСТЬ — увеличение электрической проводимости полупроводника под действием света. Причина фотопроводимости увеличение концентрации носителей заряда электронов в зоне проводимости и дырок в валентной зоне …   Большой Энциклопедический словарь

  • ФОТОПРОВОДИМОСТЬ — способность вещества изменять свою электропроводность под действием оптического излучения. Различают Ф. примесную (обусловленную ионизацией атомов донорной или акцепторной примеси) и собственную (обусловленную генерацией пар «электрон… …   Большая политехническая энциклопедия

  • фотопроводимость — увеличение электрической проводимости полупроводника под действием света. Причина фотопроводимости  увеличение концентрации носителей заряда  электронов в зоне проводимости и дырок в валентной зоне. * * * ФОТОПРОВОДИМОСТЬ ФОТОПРОВОДИМОСТЬ… …   Энциклопедический словарь

  • Фотопроводимость — Фотопроводимость  явление изменения электропроводности вещества при поглощении электромагнитного излучения[1]. Содержание 1 Физическая природа 2 Применение …   Википедия

  • Фотопроводимость — 24. Фотопроводимость Электропроводность полупроводника, обусловленная фоторезистивным эффектом Источник: ГОСТ 22622 77: Материалы полупроводниковые. Термины и определения основных электрофизических параметров …   Словарь-справочник терминов нормативно-технической документации

  • фотопроводимость —  Рhotoconductivity  Фотопроводимость   Увеличение электрической проводимости полупроводника под действием света. Причина фотопроводимости увеличение концентрации носителей заряда электронов в зоне проводимости и дырок в валентной зоне …   Толковый англо-русский словарь по нанотехнологии. - М.

  • фотопроводимость — fotoelektrinis laidumas statusas T sritis automatika atitikmenys: angl. photoconduction vok. Photoleitung, f rus. фотопроводимость, f pranc. photoconduction, f …   Automatikos terminų žodynas

Книги



Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»