Форма (матем.) это:

Форма (матем.)
Форма (математическая), многочлен от нескольких переменных, все члены которого имеют одну и ту же степень (под степенью одночлена хaуb... zg понимают число a + b +... + g). Теория Ф. находит применение в алгебраической геометрии, теории чисел, дифференциальной геометрии, механике и др. областях математики и её приложений.

В зависимости от числа m переменных Ф. называют бинарными (при m = 2), тернарными (при m = 3) и т.д., в зависимости от степени n их членов √ линейными (при n = 1), квадратичными (при n = 2), кубичными (при n = 3) и т.д. Например, ху + 2y2 + z2 является тернарной квадратичной Ф. Если переменные можно разбить на группы так, чтобы каждый член Ф. линейно зависел от переменных каждой группы, то Ф. называется полилинейной. Примером полилинейной Ф. является определитель, рассматриваемый как функция своих элементов (группы, на которые разбиваются в этом случае элементы, представляют собой совокупности элементов, расположенные в одинаковых строках или столбцах). Любая Ф. может быть получена из полилинейной Ф. путём отождествления некоторых переменных. Обратно √ из каждой Ф. можно путём некоторого процесса, называемого процессом поляризации, получить полилинейную Ф. Например, Ф. x2 + 2x1, x2 + x2 соответствует полилинейная Ф.: x1y1 + x1y2 + y1x2 + x2y2, которая в результате отождествления y1 с x1 и y2 c x2 превращается в данную Ф.: x12 + 2x1x2 + x22.

Уравнение любой алгебраической кривой на плоскости может быть записано в однородных координатах в виде f (x1, x2, x3) = 0, где f √ некоторая тернарная Ф. Аналогично можно дать геометрическое истолкование Ф. большего числа переменных. Геометрические свойства кривых поверхностей и т.д., не зависящие от выбора системы координат, выражаются при помощи инвариантов Ф. Теория инвариантов является одним из основных разделов алгебраической теории Ф., находящим применение не только в алгебраической геометрии, но и в ряде др. разделов математики и её приложений.

Наиболее важными для приложений являются квадратичные формы. Например, квадрат длины вектора выражается в виде квадратичной Ф. от его координат. Если механическая система при движении остаётся близкой к положению равновесия, то её кинетическая и потенциальная энергия (если они не зависят явно от времени) выражаются, соответственно, квадратичными Ф. вида:

═и .

Изучение колебаний таких систем основано на теории квадратичных Ф., в частности на приведении этих Ф. к сумме квадратов. Теория квадратичных Ф. тесно связана с теорией кривых и поверхностей второго порядка (см. также Эрмитова форма).

В теории чисел весьма важным является вопрос о представимости целых чисел как значений Ф. с целочисленными коэффициентами при целочисленных значениях переменных. Например, любое натуральное число представимо в виде x2 + y2 + z2 + t2 (теорема Лагранжа). Изучение вопроса о представимости целых чисел в виде ax2 + 2bxy + су2; где а, b, с, х и у √ целые числа, было проведено Ж. Лагранжем и К. Гауссом. Этот вопрос тесно связан с теорией алгебраических чисел. А. Туэ доказал, что уравнения вида f (х, у) = m, где степень формы f больше двух, имеют конечное число целочисленных решений (см. Диофантовы уравнения).

В дифференциальной геометрии и римановой геометрии используются дифференциальные Ф., т. е. многочлены от дифференциалов переменных, каждый член которых имеет относительно дифференциалов одну и ту же степень. Коэффициенты дифференциальных Ф. могут произвольно зависеть от самих переменных. Рассматриваются и полилинейные дифференциальные Ф. Примерами дифференциальных Ф. являются первая и вторая квадратичные Ф. поверхностей теории. Важную роль в дифференциальной геометрии играют целые рациональные функции от коэффициентов квадратичных Ф. и их производных, не изменяющиеся при любых дифференцируемых невырождающихся преобразованиях переменных (дифференциальные инварианты). Например, полная, или гауссова, кривизна поверхности является дифференциальным инвариантом первой квадратичной Ф. Исследования по теории дифференциальных инвариантов сыграли важную роль в возникновении тензорного исчисления. Теория дифференциальных инвариантов находит большое применение в физике, позволяя давать инвариантные (не зависящие от выбора системы координат) формулировки физическим законам.

Многие теоремы интегрального исчисления (см. Грина формулы, Остроградского формула, Стокса формула) могут рассматриваться как теоремы о связи дифференциальных Ф. различной степени. Обобщая эти соотношения, Э. Картан построил теорию внешнего дифференцирования Ф., играющую важную роль в современной математике.


Лит.: Веблен О., Инварианты дифференциальных квадратичных форм, пер. с англ., М., 1948; Гуревич Г. Б., Основы теории алгебраических инвариантов, М. √ Л.. 1948; Гантмахер Ф. Р., Теория матриц, 3 изд., М., 1967; Боревич З. И., Шафаревич И. Р., Теория чисел, 2 изд., М., 1972.


Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Форма (матем.)" в других словарях:

  • Форма (матем.) — …   Википедия

  • ФОРМА — (матем.), многочлен отнеск. (от) переменных, все члены к рых имеют одну и ту же степень (под степенью одночлена xayбета...zу понимают число и = а + бета +...+у). В зависимости от числа т переменных различают бинарные Ф. (m = 2), тернарные Ф. (m …   Естествознание. Энциклопедический словарь

  • форма — ы; ж. [лат. fōrma вид, облик, наружность] 1. Внешние очертания, наружный вид предмета. Земля имеет форму шара. Квадратная ф. Предмет изогнутой формы. Облака меняют свои формы. Сосуды различных форм. Налитая в сосуд вода принимает форму сосуда.… …   Энциклопедический словарь

  • НОРМАЛЬНАЯ ФОРМА — 1) Н. ф. матрицы A матрица Nзаранее определенного специального вида, получаемая из Ас помощью преобразований определенного типа. В зависимости от рассматриваемого типа преобразований, от области K, к к рой принадлежат коэффициенты А , от вида Аи …   Математическая энциклопедия

  • ДИФФЕРЕНЦИАЛЬНАЯ ФОРМА — 1) Д. ф. степени р, р форма на дифференцируемом многообразии М р раз ковариантное тензорное поле на М. Ее можно интерпретировать также как р линейное (над алгеброй F(M)гладких вещественных функций на М)отображение F(M), где есть Р(М) модуль… …   Математическая энциклопедия

  • Пространственная форма — Пространственная форма  связное полное риманово многообразие постоянной кривизны . Пространственная форма называется сферической, евклидовой или гиперболической если соответственно , , . С помощью перенурмеровки метрики, классификацию… …   Википедия

  • КВАДРАТИЧНАЯ ФОРМА — над коммутативным люльцом с единицей однородный многочлен от n=n(q)переменных с коэффициентами Обычно R это поле С, R или Q, либо кольцо Z, кольцо целых элементов алгебраич. числового поля, а также их пополнения по неархимедовым нормам.… …   Математическая энциклопедия

  • СВЯЗНОСТИ ФОРМА — линейная дифференциальная форма в на главном расслоенном пространстве Р, к рая принимает значения в алгебре gструктурной группы Gпространства Р, определяется нек рой линейной связностью Г в Р и сама определяет эту связность однозначно. По… …   Математическая энциклопедия

  • ЛИНЕЙНАЯ ФОРМА ОТ ЛОГАРИФМОВ — алгебраических чисел выражение вида Эффективные оценки снизу для |L| в предположении, что коэффициенты рациональные или алгебраич. числа, а фиксированные ветви логарифмов, линейно независимые над полем Q, играют большую роль в теории чисел. Когда …   Математическая энциклопедия

  • Сигнатура (матем.) — Сигнатура (математическая) числовая характеристика квадратичной формы. Каждая квадратичная форма с действительными коэффициентом может быть приведена с помощью невырожденного линейного преобразования переменных с действительными коэффициентами к… …   Большая советская энциклопедия

Книги



Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»