Траектория (физич., математич.) это:

Траектория (физич., математич.)
Траектория (от позднелат. trajectorius — относящийся к перемещению), непрерывная линия, которую описывает точка при своём движении. Если Т. — прямая линия, движение точки называется прямолинейным, в противном случае — криволинейным. Вид Т. свободной материальной точки зависит от действующих на точку сил, начальных условий движения и от того, по отношению к какой системе отсчёта движение рассматривается; для несвободной точки вид Т. зависит ещё от наложенных связей (см. Связи механические). Например, по отношению к Земле (если пренебречь её суточным вращением) Т. свободной материальной точки, отпущенной без начальной скорости и движущейся под действием силы тяжести, будет прямая линия (вертикаль), а если точке сообщить начальную скорость u0, не направленную вдоль вертикали, то при отсутствии сопротивления воздуха её Т. будет парабола (рис. 1). Т. точки, движущейся в центральном поле тяготения, в зависимости от величины начальной скорости может быть эллипс, парабола или гипербола (в частных случаях — прямая линия или окружность). Так, в поле тяготения Земли, если считать его центральным и пренебречь сопротивлением среды, Т. точки, получившей вблизи поверхности Земли начальную скорость u0, направленную горизонтально (рис. 2), будет: окружность, когда 7,9 км/сек (первая космическая скорость); эллипс, когда ; парабола, когда ═11,2 км/сек (вторая космическая скорость) и гипербола, когда . Здесь R — радиус Земли, g— ускорение силы тяготения вблизи земной поверхности, а движение рассматривается по отношению к осям, перемещающимся вместе с центром Земли поступательно относительно звёзд; для тела (например, спутника) всё сказанное относится к Т. его центра тяжести. Если же направление u0 не будет ни горизонтальным, ни вертикальным, то при ═Т. точки будет представлять собой дугу эллипса, пересекающую поверхность Земли; таковы Т. центра тяжести баллистических ракет. Пример несвободной точки — небольшой груз, подвешенный на нити (см. Маятник). Если нить отклонить от вертикали и отпустить без начальной скорости, то Т. груза будет дугой окружности, а если при этом грузу сообщить начальную скорость, не лежащую в плоскости отклонения нити, то Т. груза могут быть кривые довольно сложного вида, лежащие на поверхности сферы (сферический маятник), но в частном случае это может быть окружность, лежащая в горизонтальной плоскости (конический маятник). Т. точек твёрдого тела зависят от закона движения тела. При поступательном движении тела Т. всех его точек одинаковы, а во всех других случаях движения эти Т. будут вообще разными для разных точек тела. Например, у колеса автомобиля на прямолинейном участке пути Т. точки обода колеса по отношению к шоссе будет циклоида, а Т. центра колеса — прямая линия. По отношению же к кузову автомобиля Т. точки обода будет окружность, а центр колеса — неподвижен. Определение Т. имеет важное значение как при теоретических исследованиях, так и при решении многих практических задач. С. М. Тарг.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Траектория (физич., математич.)" в других словарях:

  • ОТНОСИТЕЛЬНОСТИ ТЕОРИЯ — физическая теория, в развитии которой необходимо различать 3 этапа. 1) Принцип относительности классической механики (Галилей, Ньютон) гласит: во всех равномерно и прямолинейно движущихся системах механические процессы протекают точно так же, как …   Философская энциклопедия

  • ПЛАСТИЧНОСТИ МАТЕМАТИЧЕСКАЯ ТЕОРИЯ — теория деформируемого пластичного твердого тела, в к рой исследуются задачи, состоящие в определении полей вектора перемещений и( х, t).или вектора скоростей v(x,t), тензора деформации eij( х, t).или скоростей деформации vij(x, t).и тензора… …   Математическая энциклопедия

  • ВАРИАЦИОННЫЕ ПРИНЦИПЫ КЛАССИЧЕСКОЙ МЕХАНИКИ — основные, исходные положения аналитич. механики, математически выраженные в форме вариационных соотношений, из к рых как логпч. следствия вытекают дифференциальные уравнения движения, а также все положения и законы механики. В В. п. к. м.… …   Математическая энциклопедия

  • Жуковский, Николай Егорович — профессор Моск. унив. и Имп. технического училища, род. в 1847 г.. Воспитывался в 5 й моск. гимназии, а затем получил высшее образование в Моск. унив. Окончив курс в 1868 г. со степенью кандидата по математическому разряду, поступил в Имп.… …   Большая биографическая энциклопедия

  • МАРКОВСКИЙ ПРОЦЕСС — процесс без последействия, случайный процесс, эволюция к рого после любого заданного значения временного параметра tне зависит от эволюции, предшествовавшей t, при условии, что значение процесса в этот момент фиксировано (короче: будущее н… …   Математическая энциклопедия

  • ЛОБАЧЕВСКОГО ГЕОМЕТРИЯ — геометрия, основанная на тех же основных посылках, что и евклидова геометрия, за исключением аксиомы о параллельных (см. Пятый постулат). В евклидовой геометрии согласно этой аксиоме на плоскости через точку Р, лежащую вне прямой А А, проходит… …   Математическая энциклопедия

  • МНОГОЭКСТРЕМАЛЬНАЯ ЗАДАЧА — экстремальная задача, имеющая несколько или неизвестное число локальных экстремумов. Проблема отыскания глобального экстремума f{x), решена для основных классов унимодальных функций (прежде всего для выпуклых и родственных им, см. Выпуклое… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»