Тейлора ряд это:

Тейлора ряд
        Степенной ряд вида
        , (1)
        , (1)
        где f (x) — функция, имеющая при х = а производные всех порядков. Во многих практически важных случаях этот ряд сходится к f (x) на некотором интервале с центром в точке а:
        (2)
         (2)
        (эта формула опубликована в 1715 Б. Тейлором). Разность Rn (x) = f (x) — Sn (x), где Sn (x) — сумма первых n + 1 членов ряда (1), называется остаточным членом Т. р. Формула (2) справедлива, если
        ,
        ,
        применимом и к функциям многих переменных.
         При а = 0 разложение функции в Т. р. (исторически неправильно называемый в этом случае рядом Маклорена; см. Маклорена ряд) принимает вид:
        ,
        ,
        в частности:
        (3)
         (3)
        (4)
         (4)
        (5)
         (5)
        (6)
         (6)
        .(7)
        .(7)
        Ряд (3), являющийся обобщением на случай дробных и отрицательных показателей формулы бинома Ньютона, сходится: при -1< х < 1, если m < -1; при -1< x ≤ 1, если -1< m < 0; при -1 ≤ x ≤ 1, если m > 0. Ряды (4), (5) и (6) сходятся при любых значениях х, ряд (7) сходится при -1< x ≤ 1.
         Функция f (z) комплексного переменного z, регулярная в точке а, раскладывается в Т. р. по степеням zа внутри круга с центром в точке я и с радиусом, равным расстоянию от а до ближайшей особой точки функции f (z). Вне этого круга Т. р. расходится, поведение же его на границе круга сходимости может быть весьма сложным. Радиус круга сходимости выражается через коэффициенты Т. р. (см. Радиус сходимости).
         Т. р. является мощным аппаратом для исследования функций и для приближённых вычислений. См. также Тейлора формула.
        
         Лит.: Хинчин А. Я., Краткий курс математического анализа, М., 1953; Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 7 изд., т. 2, М., 1969.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Тейлора ряд" в других словарях:

  • ТЕЙЛОРА РЯД — степенной ряд вида где f(а), f (а), f (а),... значения заданной функции f(х) и ее последовательных производных при х=а (если а=0, то Тейлора ряда называют рядом Маклорена). Частные суммы Тейлора ряда важный аппарат приближенного представления… …   Большой Энциклопедический словарь

  • ТЕЙЛОРА РЯД — степенной ряд, описывающий поведение данной ф ции f( х) в окрестности заданной точки. Точнее, если f(x )в точке х0 имеет бесконечное число производных, то её Т. р. имеет вид Т. р. назван по имени Б. Тейлора (В. Taylor), опубликовавшего ряд (*) в… …   Физическая энциклопедия

  • Тейлора ряд — степенной ряд вида где f(а), f (a), f (а), ...  значения заданной функции f(х) и её последовательных производных при х = а (если а = 0, то ряд Тейлора называют рядом Маклорена). Частные суммы ряда Тейлора  важный аппарат приближённого… …   Энциклопедический словарь

  • ТЕЙЛОРА РЯД — степенной ряд где числовая функция f определена в нек рой окрестности точки х 0 и имеет в этой точке производные всех порядков. Частными суммами Т. р. являются Тейлора многочлены. Если х 0 комплексное число, функция f определена в нек рой… …   Математическая энциклопедия

  • ТЕЙЛОРА РЯД — степенной ряд вида где f(a), f (a), f (a), ... значения заданной функции Дл:) и её последовательных производных при х = а (если а = 0, то Т. р. наз. рядом Маклорена). Частные суммы Т. р. важный аппарат приближённого представления функции f(x). Т …   Естествознание. Энциклопедический словарь

  • Тейлора ряд — …   Википедия

  • Ряд Тейлора — Ряд Тейлора  разложение функции в бесконечную сумму степенных функций. Ряд назван в честь английского математика Брука Тейлора, хотя ряд Тейлора был известен задолго до публикаций Тейлора  его использовали ещё в XVII веке Грегори, а… …   Википедия

  • Ряд тейлора — разложение функции в бесконечную сумму степенных функций. Ряд назван в честь английского математика Тейлора, хотя ряд Тейлора был известен задолго до публикаций Тейлора его использовали ещё в XVII веке Грегори, а также Ньютон. Ряды Тейлора… …   Википедия

  • Ряд Маклорена — Ряд Тейлора разложение функции в бесконечную сумму степенных функций. Ряд назван в честь английского математика Тейлора, хотя ряд Тейлора был известен задолго до публикаций Тейлора его использовали ещё в XVII веке Грегори, а также Ньютон. Ряды… …   Википедия

  • Ряд Бюрмана — Лагранжа — определяется как разложение голоморфной функции f(z) по степеням другой голоморфной функции w(z) и представляет собой далеко идущее обобщение ряда Тейлора. Пусть f(z) и w(z) голоморфны в окрестности некоторой точки , притом w(a) = 0 и a простой… …   Википедия

Книги

  • Математическое просвещение. Выпуск 6, Бончковского Р. Н.. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Сборник «Математическое Просвещение» выпуск 6 составлен по образцу предыдущих выпусков и имеет… Подробнее  Купить за 1475 руб
  • Ряд Тейлора, Джесси Рассел. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. High Quality Content by WIKIPEDIA articles! Ряд Те?йлора — разложение функции в бесконечную сумму… Подробнее  Купить за 1254 руб
  • Экономика и капитализм, Воронцов В.П.. Творчество выдающегося русского мыслителя, социолога и экономиста Василия Павловича Воронцова (1847-1918) охватывает вопросы методологии социального познания и специфики социологического… Подробнее  Купить за 660 руб
Другие книги по запросу «Тейлора ряд» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»