Сферическое отображение это:

Сферическое отображение
        поверхности S, непрерывное отображение S на сферу Р единичного радиуса, определяемое по параллельности касательных плоскостей в соответствующих точках поверхности и сферы (С. о. является также отображением по параллельности нормалей). Площадь s' сферического образа областей G поверхности S не меняется при изгибаниях S. Это обстоятельство позволяет рассматривать число s' как внутреннюю меру искривлённости области G (площадь s' рассматривается со знаком в зависимости от направления обхода её границы). Если существует предел К отношения s' к s (s — площадь G), когда область G стягивается к некоторой точке М на поверхности S, то он, очевидно, также не меняется при изгибаниях S и поэтому является внутренней характеристикой искривлённости S в точке М. Это число К называется полной, или гауссовой, кривизной поверхности S в точке М. С. о. поверхности играет важную роль в изучении свойств поверхностей.
         Лит.: Рашевский П. К., Риманова геометрия и тензорный анализ, 3 изд., М., 1967; Гильберт Д., Кон-Фоссен С., Наглядная геометрия, пер. с нем., 2 изд., М., 1951.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Сферическое отображение" в других словарях:

  • СФЕРИЧЕСКОЕ ОТОБРАЖЕНИЕ — отображение гладкой ориентируемой (гипер)поверхности Mk пространства Ek+l в (единичную) сферу Sk с центром в начале координат Ek+l, сопоставляющее точке точку с радиус вектором (единичной) нормалью к Mk в х. Иначе, С. о. определяется поливектором …   Математическая энциклопедия

  • Отображение Гаусса — …   Википедия

  • Отображение — (матем.)         множества А в множество В, соответствие, в силу которого каждому элементу х множества А соответствует определённый элемент у = f (x) множества В, называют образом элемента х (элемент х называют прообразом элемента у). Иногда под… …   Большая советская энциклопедия

  • ПОВЕРХНОСТЕЙ ТЕОРИЯ — раздел дифференциальной геометрии, в к ром изучаются поверхности. Н П. т. исследуются форма поверхности, ее искривление, свойства различного рода линий на поверхности, рассматриваются вопросы изгибания, вопросы существования поверхности с данными …   Математическая энциклопедия

  • СФЕРА — множество Sn точек хевклидова пространства En+1, находящихся от нек рой точки х 0 (центр С.) на постоянном расстоянии R (радиус С.), т. е. С. S0 пара точек, С. S1 это окружность, С. Sn при n>2 иногда наз. гиперсферой. Объем С. Sn (длина при п=1,… …   Математическая энциклопедия

  • ОРИЕНТАЦИЯ — формализация и далеко идущее обобщение понятия направления обхода. Определяется О. нек рых специальных классов пространств ( многообразий, векторных расслоений, Пуанкаре комплексов и т. д.). Современный взгляд на О. дается в рамках обобщенных… …   Математическая энциклопедия

  • ОТРИЦАТЕЛЬНОЙ КРИВИЗНЫ ПОВЕРХНОСТЬ — в непосредственном понимании Двумерная поверхность трехмерного евклидова пространства, к рая в каждой своей точке имеет отрицательную гауссову кривизну К<0. Простейшие примеры: однополостный гиперболоид (рис. 1, а), гиперболический параболоид… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»