Существенно особая точка это:

Существенно особая точка
        аналитической функции, точка z0 комплексной плоскости, в которой не существует ни конечного, ни бесконечного предела при z z0 для функции, однозначной и аналитической в некоторой окрестности этой точки (см. Аналитические функции). Примеры: точка z = 0 является С. о. т. для функции z0 функция f (z) может быть разложена в Лорана ряд
         ,
        причём среди чисел b1, b2,... бесконечно много отличных от нуля. Это свойство часто используется для определения С. о. т. О поведении функции в окрестности С. о. т. позволяет судить Сохоцкого-Вейерштрасса теорема (См. Сохоцкого - Вейерштрасса теорема). Обобщением этой теоремы служит большая теорема Пикара: во всякой окрестности С. о. т. аналитическая функция принимает любое комплексное значение, кроме, быть может, одного. Последняя теорема, в свою очередь, имеет ряд обобщений и уточнений. В некоторых отделах теории аналитических функций под С. о. т. понимают также особые точки (См. Особая точка) более сложной природы.
         Лит.: Маркушевич А. И., Теория. аналитических функций, 2 изд., т. 1—2, М., 1967—68; Неванлинна Р., Однозначные аналитические функции, пер. с нем., М.- Л., 1941.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Существенно особая точка" в других словарях:

  • Существенно особая точка — Изолированная особая точка функции , голоморфной в некоторой проколотой окрестности этой точки, называется существенно особой, если предел не существует. Содержание 1 …   Википедия

  • СУЩЕСТВЕННО ОСОБАЯ ТОЧКА — изолированная особая точка а однозначного характера аналитич. ции f(z) комплексного переменного z, для к рой не существует никакого, конечного или бесконечного, предела В достаточно малой проколотой окрестности С. о. т. или в случае функция… …   Математическая энциклопедия

  • Особая точка —         в математике.          1) Особая точка кривой, заданной уравнением F (x, у) = 0, точка М0(х0, y0), в которой обе частные производные функции F (x, у) обращаются в нуль:                   Если при этом не все вторые частные производные… …   Большая советская энциклопедия

  • ОСОБАЯ ТОЧКА — 1) О. т. аналитической функции f(z) препятствие для аналитического продолжения элемента функции f(z) комплексного переменного zвдоль какого либо пути на плоскости этого переменного. Пусть аналитическая функция f(z) определена некоторым… …   Математическая энциклопедия

  • ОСОБАЯ ТОЧКА — аналитической функции точка, в к рой нарушаются условия аналитичности. Если аналитическаяфункция f(z )задана в нек рой окрестности точки z0 всюду …   Физическая энциклопедия

  • Изолированная особая точка — точка, в некоторой проколотой окрестности которой функция однозначна и аналитична, а в самой точке либо не задана, либо не дифференцируема. Классификация Если особая точка для , то, будучи аналитической в некоторой проколотой окрестности этой… …   Википедия

  • Устранимая особая точка — Изолированная особая точка называется устранимой особой точкой функций , голоморфной в некоторой проколотой окрестности этой точки, если существует конечный предел , и можно так доопределить функцию в этой точке значением её предела , чтобы… …   Википедия

  • ИЗОЛИРОВАННАЯ ОСОБАЯ ТОЧКА — для элемента аналитической функции f(z) точка акомплексной плоскости z, относительно к рой выполняются условия: 1) этот элемент функции f(z)не допускает аналитического продолжения по какому либо пути в точку я; 2) существует такое число R>0,… …   Математическая энциклопедия

  • РЕГУЛЯРНАЯ ОСОБАЯ ТОЧКА — понятие теории обыкновенных линейных дифференциальных уравнений с комплексным независимым переменным. Точка наз. Р. о. т. уравнения (1) или системы (2) с аналитич. оэффициентами, если а изолированная особенность коэффициентов и все решения… …   Математическая энциклопедия

  • ПОЛИКРИТИЧЕСКАЯ ТОЧКА — (мультикритическая точка) особая точка на диаграмме состояния физ. системы, допускающей существование нескольких упорядоченных фаз. Разл. виды упорядочения в этих фазах (конфигурационное, ориентационное, магнитное, сверхпроводящее и др.; см.… …   Физическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»