Статистический анализ случайных процессов это:

Статистический анализ случайных процессов
        раздел математической статистики, посвященный методам обработки и использования статистических данных, касающихся случайных процессов (См. Случайный процесс) (т. е. функций X (t) времени t, определяемых с помощью некоторого испытания и при разных испытаниях могущих в зависимости от случая принимать различные значения). Значение x (t) случайного процесса X (t), получаемое в ходе одного испытания, называется реализацией (иначе — наблюдённым значением, выборочным значением или траекторией) процесса X (t); статистические данные о X (t), используемые при статистическом анализе этого процесса, обычно представляютсобой сведения о значениях одной или нескольких реализаций x (t) в течение определенного промежутка времени или же о значениях каких-либо величин, связанных с процессом X (t) (например, о наблюденных значениях процесса Y (t), являющегося суммой X (t) и некоторого «шума» N (t), созданного внешними помехами и ошибками измерения значений x (t)). Весьма важный с точки зрения приложений класс задач С. а. с. п. представляют собой задачи обнаружения сигнала на фоне шума, играющие большую роль при радиолокации. С математической точки зрения эти задачи сводятся к статистической проверке гипотез (См. Статистическая проверка гипотез): здесь по наблюденным значениям некоторой функции требуется заключить, справедлива ли гипотеза о том, что функция эта является реализацией суммы шума N (t) и интересующего наблюдателя сигнала X (t), или же справедлива гипотеза о том, что она является реализацией одного лишь шума N (t). В случаях, когда форма сигнала X (t) не является полностью известной, задачи обнаружения часто включают в себя и задачи статистической оценки (См. Статистические оценки) неизвестных параметров сигнала; так, например, в задачах радиолокации очень важна задача об оценке времени появления сигнала, определяющего расстояние до объекта, породившего этот сигнал. Задачи статистической оценки параметров возникают и тогда, когда по данным наблюдений за значениями процесса X (t) в течение определённого промежутка времени требуется оценить значения каких-то параметров распределения вероятностей случайных величин X (t) или же, например, оценить значение в фиксированный момент времени t = t1 самого процесса Х (t) (в предположении, что t1 лежит за пределами интервала наблюдений за этим процессом) или значение y (t1) какого-либо вспомогательного процесса Y (t), статистически связанного с Х (t) (см. Случайных процессов прогнозирование). Наконец, ряд задач С. а. с. п. Относится к числу задач на Непараметрические методы статистики; так обстоит дело, в частности, когда по наблюдениям за течением процесса X (t) требуется оценить некоторые функции, характеризующие распределения вероятностей значений этого процесса (например, плотность вероятности величины Х (t), или корреляционную функцию Ex (t) X (s) процесса Х (t), или, в случае стационарного случайного процесса (См. Стационарный случайный процесс) X (t), его спектральную плотность f (λ)
         При решение задач С. а. с. п. всегда требуется принять те или иные специальные предположения о статистической структуре процесса X (t), т. е. как-то ограничить класс рассматриваемых случайных процессов. Очень ценным с точки зрения С. а. с. п. является допущение о том, что рассматриваемый процесс X (t) является стационарным случайным процессом; при этом допущении, зная значения единственной реализации x (t) в течение промежутка времени 0 ≤tT, можно уже получить целый ряд статистических выводов о вероятностных характеристиках процесса X (t). В частности, среднеарифметическое значение
        
         в случае стационарного случайного процесса X (t) при весьма широких условиях является состоятельной оценкой математического ожидания Ex (t) = m (т. е. Т →∞ к истинному значению оцениваемой величины m); аналогично этому выборочная корреляционная функция
        ,
        ,
         где τ > 0, при широких условиях является состоятельной оценкой корреляционной функции B (τ)=Ex (t) X (t + τ).
         Однако Фурье преобразование функции IT (λ) процесса X (t) — уже не представляет собой состоятельной оценки спектральной плотности f (λ), являющейся преобразованием Фурье функции В (τ); при больших значениях Т периодограмма IT (λ) ведёт себя крайне нерегулярно и при Т → ∞ она не стремится ни к какому пределу. Поэтому С. а. с. п. включает в себя ряд специальных приёмов построения состоятельных оценок спектральной плотности f (λ) по наблюдённым значениям одной реализации стационарного процесса X (t), большинство из которых основано на использовании сглаживания периодограммы процесса по сравнительно узкой области частот λ.
         При исследовании статистических свойств оценок вероятностных характеристик стационарных случайных процессов очень полезными оказываются дополнительные допущения о природе X (t) (например, допущение о том, что все конечномерные распределения значений процесса X (t) являются нормальными распределениями вероятностей). Большое развитие получили также исследования по С. а. с. п., в которых предполагается, что изучаемый процесс X (t) является марковским процессом (См. Марковский процесс) того или иного типа, или компонентой многомерного марковского процесса, или компонентой многомерного процесса, удовлетворяющего определённой системе стохастических дифференциальных уравнений.
         Лит.: Дженкинс Г., Ватте Д., Спектральный анализ и его приложения, пер. с англ., в. 1—2, М., 1971—72; Хеннан Э., Анализ временных рядов, пер. с англ., М., 1964; его же, Многомерные временные ряды, пер. с англ., М., 1974: Липцер Р. Ш., Ширяев А. Н., Статистика случайных процессов (нелинейная фильтрация и смежные вопросы), М., 1974.
         А. М. Яглом.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Статистический анализ случайных процессов" в других словарях:

  • СТАТИСТИЧЕСКИЙ АНАЛИЗ СЛУЧАЙНЫХ ПРОЦЕССОВ — раздел математич. статистики и теории случайных процессов, посвященный исследованию и решению статистических задач случайных процессов. И. А. Ибрагимов …   Математическая энциклопедия

  • РДМУ 109-77: Методические указания. Методика выбора и оптимизации контролируемых параметров технологических процессов — Терминология РДМУ 109 77: Методические указания. Методика выбора и оптимизации контролируемых параметров технологических процессов: 73. Адекватность модели Соответствие модели с экспериментальными данными по выбранному параметру оптимизации с… …   Словарь-справочник терминов нормативно-технической документации

  • Математическая статистика —         раздел математики, посвященный математическим методам систематизации, обработки и использования статистических данных для научных и практических выводов. При этом статистическими данными называются сведения о числе объектов в какой либо… …   Большая советская энциклопедия

  • МАТЕМАТИЧЕСКАЯ СТАТИСТИКА — раздел математики, посвященный математич. методам систематизации, обработки и использования статистич. данных для научных и практич. выводов. При этом статистич. данными наз. сведения о числе объектов в какой либо более или менее обширной… …   Математическая энциклопедия

  • Маслов, Валерий Константинович — Маслов Валерий Константинович Дата рождения: 21 января 1941(1941 01 21) (71 год) Место рождения: Архангельск Страна …   Википедия

  • Статистика — (Statistics) Статистика это общетеоретическая наука, изучающая количественные изменения в явлениях и процессах. Государственная статистика, службы статистики, Росстат (Госкомстат), статистические данные, статистика запросов, статистика продаж,… …   Энциклопедия инвестора

  • Математи́ческие ме́тоды — в медицине совокупность методов количественного изучения и анализа состояния и (или) поведения объектов и систем, относящихся к медицине и здравоохранению. В биологии, медицине и здравоохранении в круг явлений, изучаемых с помощью М.м., входят… …   Медицинская энциклопедия

  • Эконометрика как наука — Эконометрика  наука, изучающая конкретные количественные и качественные взаимосвязи экономических объектов и процессов с помощью математических и статистических методов и моделей. Определение предмета эконометрики было дано в уставе… …   Википедия

  • Экономическая статистика — Эконометрика  наука, изучающая конкретные количественные и качественные взаимосвязи экономических объектов и процессов с помощью математических и статистических методов и моделей. Определение предмета эконометрики было дано в уставе… …   Википедия

  • Конъюнктура — (Conjuncture) Конъюнктура это сформировавшийся комплекс условий в определенной области человеческой деятельности Понятие конъюнктуры: виды конъюнктуры, методы прогнозирования конъюнктуры, конъюнктура финансового и товарного рынков Содержание… …   Энциклопедия инвестора

Книги

Другие книги по запросу «Статистический анализ случайных процессов» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»