Спектральное разложение (случайной функции) это:

Спектральное разложение (случайной функции)
Спектральное разложение случайной функции, разложение случайной функции (в частности, случайного процесса) в ряд или интеграл по той или иной специальной системе функций такое, что коэффициенты этого разложения представляют собой взаимно некоррелированные случайные величины. Наиболее известный класс С. р. случайных функций ‒ представления стационарных случайных процессов Х (t) в виде интеграла Фурье ‒ Стилтьеса

,

где Z(l) ‒ случайная функция с некоррелированными приращениями. Существование такого С. р. показывает, что стационарный случайный процесс всегда можно рассматривать как наложение некоррелированных друг с другом гармонических колебаний различных частот со случайными фазами и амплитудами. С. р. аналогичного вида, но с заменой гармонических колебаний n-мерными плоскими волнами, имеет место и для однородных случайных полей в n-мерном пространстве. Другой тип С. р. случайных функций ‒ это разложение случайного процесса X(t), заданного на конечном отрезке оси (или, более общо, случайной функции X(t), заданной на ограниченной области n-мерного пространства), в ряд вида

,

где jk(t) и lk ‒ собственные функции и собственные значения интегрального оператора в функциональном пространстве с ядром, равным корреляционной функции случайного процесса (или функции) X(t), a Zk, k = 1, 2,..., ‒ последовательность попарно некоррелированных случайных величин единичной дисперсии. С. р. специального вида имеют место также для однородных и изотропных случайных полей в евклидовых пространствах и для однородных полей на пространствах с группой преобразований, отличных от евклидова пространства.


Лит.: Яглом А. М., Спектральные представления для различных классов случайных функций, в кн.; Труды 4-го Всесоюзного математического съезда, т. 1, Л., 1963, с. 250‒73: Гихман И. И., Скороход А. В., Теория случайных процессов, т.1, М., 1971.

═ А. М. Яглом.


Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Спектральное разложение (случайной функции)" в других словарях:

  • СПЕКТРАЛЬНОЕ РАЗЛОЖЕНИЕ — случайной функции 1) разложение случайной функции (в частности, случайного процесса) в ряд или интеграл по той или иной специальной системе функций такое, что коэффициенты этого разложения представляют собой взаимно некоррелированные случайные… …   Математическая энциклопедия

  • Спектральное разложение — I Спектральное разложение         линейного оператора, представление линейного оператора А (См. Линейный оператор) в виде линейной комбинации операторов проектирования на взаимно перпендикулярные оси или (более общо) в виде специального интеграла …   Большая советская энциклопедия

  • Стационарный случайный процесс —         важный специальный класс случайных процессов (См. Случайный процесс), часто встречающийся в приложениях теории вероятностей к различным разделам естествознания и техники. Случайный процесс X (t) называется стационарным, если все его… …   Большая советская энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»