Сопряжённые операторы это:

Сопряжённые операторы
        понятие операторов теории (См. Операторов теория). Два ограниченных линейных оператора Т и Т* в гильбертовом пространстве называются сопряжёнными, если для всех векторов х и у из Н справедливо соотношение (Tx, у) =(х, Т*у). Например, если
        ,
        ,
        то оператору
        
        
         сопряжён оператор
        
        ,
         где функция, комплексно сопряжённая с К (х, у). Если оператор Т не ограничен и его область определения Dm всюду плотна (см. Плотные и неплотные множества), то С. о. определяется на множестве тех векторов у, для которых можно найти такой вектор у*, что равенство (Tx, у) = (х, у*) справедливо для всех хDm, при этом полагают Т*у = у*. Понятие сопряженности обобщается также на операторы в др. пространствах.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Сопряжённые операторы" в других словарях:

  • Сопряжённые операторы — …   Википедия

  • Сопряжённые дифференциальные уравнения —         понятие теории дифференциальных уравнений. Уравнением, сопряжённым с дифференциальным уравнением                  , (1)          называется уравнение                  , (2)          Соотношение сопряженности взаимно. Для С. д. у. имеет… …   Большая советская энциклопедия

  • ОПЕРАТОРЫ — в квантовой теории, понятие, широко используемое в матем. аппарате квант. механики и квант. теории поля. О. служат для сопоставления с определ. волновой функцией (или вектором состояния) y другой определ. ф ции (вектора) y . Соотношение между y и …   Физическая энциклопедия

  • Линейные операторы — Линейным отображением (линейным оператором) векторного пространства LK над полем K в векторное пространство MK (над тем же полем K) называется отображение , удовлетворяющее условию линейности f(αx + βy) = αf(x) + βf(y). для всех и …   Википедия

  • Самосопряжённый оператор —         оператор, совпадающий со своим сопряжённым (см. Сопряжённые операторы). иначе называется эрмитовым. Теория С. о. возникла как обобщение теории интегральных уравнений с симметричным ядром, самосопряжённых дифференциальных уравнений,… …   Большая советская энциклопедия

  • СПЕКТРАЛЬНАЯ ПЛОТНОСТЬ — величины, характеризующей излучение (напр., потока излучения, силы света), отношение рассматриваемой величины, взятой в бесконечно малом спектр. интервале, содержащем данную длину волны l, к ширине этого интервала dl. Вместо l могут… …   Физическая энциклопедия

  • Дифференциальный оператор — Дифференциальный оператор (вообще говоря, не непрерывный, не ограниченный и не линейный)  оператор, определённый некоторым дифференциальным выражением и действующий в пространствах (вообще говоря, векторнозначных) функций (или сечений… …   Википедия

  • ПРЕДСТАВЛЕНИЙ ТЕОРИЯ — в квантовой механике изучает схемы конкретных реализаций квантовых наблюдаемых как самосопряжённых операторов, действующих в гильбертовом пространстве, и состояний как векторов этого пространства. Традиц. построение аппарата квантовой механики,… …   Физическая энциклопедия

  • КВАНТОВАЯ ТЕОРИЯ ПОЛЯ. — КВАНТОВАЯ ТЕОРИЯ ПОЛЯ. Содержание:1. Квантовые поля ................. 3002. Свободные поля и корпускулярно волновой дуализм .................... 3013. Взаимодействие полей .........3024. Теория возмущений ............... 3035. Расходимости и… …   Физическая энциклопедия

  • Спектральная теорема — В математике, в частности в линейной алгебре и функциональном анализе, термином спектральная теорема обозначают любой из целого класса результатов о линейных операторах или о матрицах. Не вдаваясь в детали можно сказать, что спектральная теорема… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»