Сера это:

Сера
(лат. Sulfur)
        S, химический элемент VI группы периодической системы Менделеева; атомный номер 16, атомная масса 32,06. Природная С. состоит из четырёх стабильных изотопов: 32S (95,02%), 33S (0,75%), 34S (4,21%), 36S (0,02%). Получены также искусственные радиоактивные изотопы 31S (T1/2 = 2,4 сек), 35S (T1/2 = 87,1 cym), 37S (T1/2 = 5,04 мин).
         Историческая справка. С. в самородном состоянии, а также в виде сернистых соединений известна с древнейших времён. Она упоминается в Библии, поэмах Гомера и др. С. входила в состав «священных» курений при религиозных обрядах; считалось, что запах горящей С. отгоняет злых духов. С. давно стала необходимым компонентом зажигательных смесей для военных целей, например «греческого огня» (10 в. н. э.). Около 8 в. в Китае стали использовать С. в пиротехнических целях. Издавна С. и её соединениями лечили кожные заболевания. В период арабской алхимии возникла гипотеза, согласно которой С. (начало горючести) и ртуть (начало металличности) считали составными частями всех металлов. Элементарную природу С. установил А. Л. Лавуазье и включил её в список неметаллических простых тел (1789). В 1822 Э. Мичерлих обнаружил аллотропию С.
         Распространение в природе. С. относится к весьма распространённым химическим элементам (кларк 4,7·10-2); встречается в свободном состоянии (Сера самородная) и в виде соединений — сульфидов, полисульфидов, сульфатов (см. Сульфиды природные, Сульфаты природные, Сульфидные руды). Вода морей и океанов содержит сульфаты натрия, магния, кальция. Известно более 200 минералов С., образующихся при эндогенных процессах. В биосфере образуется свыше 150 минералов С. (преимущественно сульфатов); широко распространены процессы окисления сульфидов до сульфатов, которые в свою очередь восстанавливаются до вторичного H2S и сульфидов. Эти реакции происходят при участии микроорганизмов. Многие процессы биосферы приводят к концентрации С. — она накапливается в гумусе почв, углях, нефти, морях и океанах (8,9·10-2%), подземных водах, в озёрах и солончаках. В глинах и сланцах С. в 6 раз больше, чем в земной коре в целом, в гипсе — в 200 раз, в подземных сульфатных водах — в десятки раз. В биосфере происходит круговорот С.: она приносится на материки с атмосферными осадками и возвращается в океан со стоком. Источником С. в геологическом прошлом Земли служили главным образом продукты извержения вулканов, содержащие SO2 и H2S. Хозяйственная деятельность человека ускорила миграцию С.; интенсифицировалось окисление сульфидов.
         Физические и химические свойства. С. — твёрдое кристаллическое вещество, устойчивое в виде двух аллотропических модификаций. Ромбическая α-S лимонно-жёлтого цвета, плотность 2,07 г/см3, tпл 112,8 °С, устойчива ниже 95,6°С; моноклинная β-S медово-жёлтого цвета, плотность 1,96 г/см3, tпл 119,3 °С, устойчива между 95,6 °С и температурой плавления. Обе эти формы образованы восьмичленными циклическими молекулами S8 с энергией связи S — S 225,7 кдж/моль.
         При плавлении С. превращается в подвижную жёлтую жидкость, которая выше 160 °С буреет, а около 190 °С становится вязкой тёмно-коричневой массой. Выше 190°С вязкость уменьшается, а при 300 °С С. вновь становится жидкотекучей. Это обусловлено изменением строения молекул: при 160 °С кольца S8 начинают разрываться, переходя в открытые цепи; дальнейшее нагревание выше 190 °С уменьшает среднюю длину таких цепей.
         Если расплавленную С., нагретую до 250—300 °С, влить тонкой струей в холодную воду, то получается коричнево-жёлтая упругая масса (пластическая С.). Она лишь частично растворяется в сероуглероде, в осадке остаётся рыхлый порошок. Растворимая в CS2 модификация называется λ-S, а нерастворимая — μ-S. При комнатной температуре обе эти модификации превращаются в устойчивую хрупкую α-S. tkип С. 444,6 °С (одна из стандартных точек международной температурной шкалы). В парах при температуре кипения, кроме молекул S8, существуют также S6, S4 и S2. При дальнейшем нагревании крупные молекулы распадаются, и при 900°С остаются лишь S2, которые приблизительно при 1500°С заметно диссоциируют на атомы. При замораживании жидким азотом сильно нагретых паров С. получается устойчивая ниже — 80°С пурпурная модификация, образованная молекулами S2.
         С. — плохой проводник тепла и электричества. В воде она практически нерастворима, хорошо растворяется в безводном аммиаке, сероуглероде и в ряде органических растворителей (фенол, бензол, дихлорэтан и др.).
         Конфигурация внешних электронов атома S 3s23p 4. В соединениях С. проявляет степени окисления -2, +4, +6.
         С. химически активна и особенно легко при нагревании соединяется почти со всеми элементами, за исключением N2, I2, Au, Pt и инертных газов. СO2 на воздухе выше 300 °С образует окислы: SO2Сернистый ангидрид и SO3Серный ангидрид, из которых получают соответственно сернистую кислоту (См. Сернистая кислота) и серную кислоту (См. Серная кислота), а также их соли Сульфиты и Сульфаты (см. также Тиокислоты и Тиосульфаты). Уже на холоду S энергично соединяется с F2, при нагревании реагирует с Cl2 (см. Серы фториды, Серы хлориды); с бромом С. образует только S2Br2, иодиды серы неустойчивы. При нагревании (150 — 200 °С) наступает обратимая реакция с H2 с получением сернистого водорода (См. Сернистый водород). С. образует также многосернистые водороды общей формулы H2Sx, т. н. сульфаны. Известны многочисленные Сераорганические соединения.
         При нагревании С. взаимодействует с металлами, образуя соответствующие сернистые соединения (сульфиды) и многосернистые металлы (полисульфиды). При температуре 800—900 °С пары С. реагируют с углеродом, образуя Сероуглерод CS2. Соединения С. с азотом (N4S4 и N2S5) могут быть получены только косвенным путём.
         Получение. Элементарную С. получают из серы самородной, а также окислением сернистого водорода и восстановлением сернистого ангидрида. О способах добычи С. см. Серные руды. Источник сернистого водорода для производства С. — коксовые, природные газы, газы крекинга нефти. Разработаны многочисленные методы переработки H2S; наибольшее значение имеют следующие: 1) H2S извлекают из газов раствором моногидротиоарсената натрия:
         Na2HAsS2 + H2S = Na2HAsS3O + H2O.
        Затем продувкой воздуха через раствор осаждают С. в свободном виде:
         NaHAsS3O + 1/2 O2 = Na2HAsS2O2 + S.
        2) H2S выделяют из газов в концентрированном виде. Затем его основная масса окисляется кислородом воздуха до С. и частично до SO2. После охлаждения H2S и образовавшиеся газы (SO2, N2, CO2) поступают в два последовательных конвертора, где в присутствии катализатора (активированный боксит или специально изготовляемый алюмогель) происходит реакция:
         2H2S + SO2 = 3S + 2H2O.
         В основе получения С. из SO2 лежит реакция восстановления его углём или природными углеводородными газами. Иногда это производство сочетается с переработкой пиритных руд.
         В 1972 элементарной С. в мире (без социалистических стран) произведено 32,0 млн. т; основная масса её добывалась из природных самородных руд. В 70-е гг. 20 в. первостепенное значение (в связи с открытием крупных месторождений сероводородсодержащих топливных газов) приобретают методы получения С. из H2S.
         Сорта С. Выплавленная непосредственно из серных руд С. называется природной комовой; полученная из H2S и SO2 — газовой комовой. Природная комовая С., очищенная перегонкой, называется рафинированной. Сконденсированная из паров при температуре выше точки плавления в жидком состоянии и затем разлитая в формы — черенковой С. При конденсации С. ниже точки плавления на стенках конденсационных камер образуется мелкий порошок С. — серный цвет. Особо высокодисперсная С. носит название коллоидной.
         Применение. С. применяется в первую очередь для получения серной кислоты: в бумажной промышленности (для получения сульфитцеллюлозы); в сельском хозяйстве (для борьбы с болезнями растений, главным образом винограда и хлопчатника); в резиновой промышленности (вулканизующий агент); в производстве красителей и светящихся составов; для получения чёрного (охотничьего) пороха; в производстве спичек.
         И. К. Малина.
         В медицинской практике применение С. основано на её способности при взаимодействии с органическими веществами организма образовывать сульфиды и пентатионовую кислоту, от присутствия которых зависят кератолитические (растворяющие — от греч. kéras — рог и lytikós — растворяющий), противомикробные и противопаразитарные эффекты. С. входит в состав Вилькинсона мази (См. Вилькинсона мазь) и других препаратов, применяемых для лечения чесотки. Очищенную и осажденную С. употребляют в мазях и присыпках для лечения некоторых кожных заболеваний (себорея, псориаз и др.); в порошке — при глистных инвазиях (энтеробиоз); в растворах — для пиротерапии (См. Пиротерапия) прогрессивного паралича и др.
         Сера в организме. В виде органических и неорганических соединений С. постоянно присутствует во всех живых организмах и является важным биогенным элементом (См. Биогенные элементы). Её среднее содержание в расчёте на сухое вещество составляет: в морских растениях около 1,2%, наземных — 0,3%, в морских животных 0,5—2%, наземных — 0,5%. Биологическая роль С. определяется тем, что она входит в состав широко распространённых в живой природе соединений: аминокислот (Метионин, Цистеин), и следовательно белков и пептидов; коферментов (кофермент (См. Коферменты) А, Липоевая кислота), витаминов (Биотин, Тиамин), Глутатиона и другие Сульфгидрильные группы (— SH) остатков цистеина играют важную роль в структуре и каталитическая активности многих ферментов. Образуя дисульфидные связи (— S — S —) внутри отдельных полипептидных цепей и между ними, эти группы участвуют в поддержании пространственной структуры молекул белков. У животных С. обнаружена также в виде органических сульфатов и сульфокислот — хондроитинсерной кислоты (См. Хондроитинсерные кислоты) (в хрящах и костях), таурохолиевой кислоты (в жёлчи), Гепарина, Таурина. В некоторых железосодержащих белках (например, ферродоксинах) С. обнаружена в форме кислотолабильного сульфида. С. способна к образованию богатых энергией связей в макроэргических соединениях (См. Макроэргические соединения).
         Неорганические соединения С. в организмах высших животных обнаружены в небольших количествах, главным образом в виде сульфатов (в крови, моче), а также роданидов (в слюне, желудочном соке, молоке, моче). Морские организмы богаче неорганическими соединениями С., чем пресноводные и наземные. Для растений и многих микроорганизмов сульфат (SO42-) наряду с фосфатом и нитратом служит важнейшим источником минерального питания. Перед включением в органические соединения С. претерпевает изменения в валентности и превращается затем в органическую форму в своём наименее окисленном состоянии; т. о. С. широко участвует в окислительно-восстановительных реакциях в клетках. В клетках сульфаты, взаимодействуя с аденозинтрифосфатом (АТФ), превращаются в активную форму — аденилилсульфат:
        
        
         Катализирующий эту реакцию фермент — сульфурилаза (АТФ: сульфат — адснилилтрансфераза) широко распространён в природе. В такой активированной форме сульфонильная группа подвергается дальнейшим превращениям — переносится на др. акцептор или восстанавливается.
         Животные усваивают С. в составе органических соединений. Автотрофные организмы получают всю С., содержащуюся в клетках, из неорганических соединений, главным образом в виде сульфатов. Способностью к автотрофному усвоению С. обладают высшие растения, многие водоросли, грибы и бактерии. (Из культуры бактерий был выделен специальный белок, осуществляющий перенос сульфата через клеточную мембрану из среды в клетку.) Большую роль в круговороте С. в природе играют микроорганизмы — Десульфурирующие бактерии и Серобактерии. Многие разрабатываемые месторождения С. — биогенного происхождения. С. входит в состав антибиотиков (Пенициллины, Цефалоспорины); её соединения используются в качестве радиозащитных средств (См. Радиозащитные средства), средств защиты растений.
         Л. И. Беленький.
        
         Лит.: Справочник сернокислотчика, под ред. К. М. Малина, 2 изд., М., 1971; Природная сера, под ред. М. А. Менковского, М., 1972; Некрасов Б. В., Основы обшей химии, 3 изд., т. 1, М., 1973; Реми Г., Курс неорганической химии, пер. с нем., т. 1, М., 1972; Янг Л., Моу Д ж., Метаболизм соединений серы, пер. с англ., М., 1961; Горизонты биохимии, пер. с англ., М., 1964; Биохимия растений, пер. с англ., М., 1968, гл. 19; Торчинский Ю. М., Сульфгидрильные и дисульфидные группы белков, М., 1971; Дегли С., Никольсон Д., Метаболические пути, пер. с англ., М., 1973.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Синонимы:

Смотреть что такое "Сера" в других словарях:

  • СЕРА — жен. одно из простых (несложных, неразлагаемых) веществ, плавкое и сильно горючее ископаемое вулканического рожденья; как товар, зовут ее: сера горючая. Порох делается из селитры и серы, с углем. Черенковая сера, отлитая палочками. | Сера, серка …   Толковый словарь Даля

  • СЕРА — СЕРА, Sulfur, хим. элемент VІ гр. Менделеевской системы, символ S, порядковый номер 16, ат. в. 32,07. Известна с древнейших времен. В природе встречается в виде залежей водного (нептунического) и вулканического. происхождения. Встречается также в …   Большая медицинская энциклопедия

  • СЕРА — хим. элемент, символ S (лат. Sulfur), ат. н. 16, ат. м. 32,06. Существует в виде нескольких аллотропных модификаций; среди них сера моноклинной модификации (плотность 1960 кг/м3, tпл = 119°С) и ромбическая сера (плотность 2070 кг/м3, ίπι = 112,8… …   Большая политехническая энциклопедия

  • СЕРА — (обозначается S), химический элемент VI группы ПЕРИОДИЧЕСКОЙ ТАБЛИЦЫ, неметалл, известный с древности. Встречается в природе как в виде отдельного элемента, так и в виде сульфидных минералов, таких как ГАЛЕНИТ и ПИРИТ, и сульфатных минералов,… …   Научно-технический энциклопедический словарь

  • сера — В мифологии ирландских кельтов Сера отец Парталона (см. глава 6). Согласно некоторым источникам, именно Сера, а не Парталон был мужем Дилгнейд. (Источник: «Кельтская мифология. Энциклопедия.» Пер. с англ. С. Головой и А. Голова, Эксмо, 2002.) …   Энциклопедия мифологии

  • СЕРА — (Sulfur), S, химический элемент VI группы периодической системы; атомный номер 16, атомная масса 32,066; относится к халькогенам; неметалл желтого цвета; tпл 110,2шC (a S) и 115,21шC (b S). Используется в производстве серной кислоты, сульфитов,… …   Современная энциклопедия

  • СЕРА — (лат. Sulfur) S, химический элемент VI группы периодической системы Менделеева, атомный номер 16, атомная масса 32,066. Желтые кристаллы. Устойчива в двух модификациях ромбической (плотность 2,07 г/см³, tпл 112,8 .С) и моноклинной (плотность… …   Большой Энциклопедический словарь

  • сера — Сера, Двуокись серы      Универсальное дезинфицирующее средство, чаще всего применяемое виноделами для предотвращения уксусного брожения, а при производстве белых вин дополнительно для защиты от вредных бактерий. * * * (Источник: «Объединенный… …   Кулинарный словарь

  • СЕРА — (S) твердое вещество желтого цвета; в природе встречается как в свободном виде, так и в виде различных соединений. Содержание серы и ее соединений в воздухе рабочей зоны Наименование вещества, № CAS, синонимы ПДК, мг/м3 Характеристика… …   Российская энциклопедия по охране труда

  • Сера — (Sulfur), S, химический элемент VI группы периодической системы; атомный номер 16, атомная масса 32,066; относится к халькогенам; неметалл желтого цвета; tпл 110,2°C (a–S) и 115,21°C (b–S). Используется в производстве серной кислоты, сульфитов,… …   Иллюстрированный энциклопедический словарь

  • СЕРА — Ондреев, крестьянин. 1498. Писц. IV, 83. Сера, крестьянин. 1539. Писц. IV, 433. Срв. Серко …   Биографический словарь

Книги

  • Сера, Jesse Russell. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Внимание! Книга представляет собой набор материалов из Википедии и/или других online-источников.High… Подробнее  Купить за 1125 руб
  • Сера, Хайо Дюхтинг. Молчаливый, застенчивый, однако выделяющийся среди молодых художников обостренным чувством собственного достоинства, Жорж Сера уединенно жил в небольшой мастерской на бульваре Клиши в Париже.… Подробнее  Купить за 686 руб
  • Сера, Хайо Дюхтинг. От издателя: Молчаливый, застенчивый, однако выделяющийся среди молодых художников обостренным чувством собственного достоинства, Жорж Сера уединенно жил в небольшой мастерской на бульваре… Подробнее  Купить за 416 грн (только Украина)
Другие книги по запросу «Сера» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»