Ритца и Галёркина методы это:

Ритца и Галёркина методы
        широко распространённые Прямые методы решения главным образом вариационных задач и краевых задач математического анализа (см. Краевые задачи, Вариационное исчисление).
         Метод Ритца применяется большей частью для приближённого решения вариационных задач и тех краевых задач, которые сводятся к вариационным. Пусть задан Функционал V [y (x)] (или более сложный функционал) и требуется найти такую функцию у (х), принимающую в точках x0 и xi заданные значения α = у (х0) и β = у (х1), на которой функционал V [y (x)] будет достигать Экстремума. Значения исследуемого на экстремум функционала V [y (x)] рассматриваются не на всех допустимых в данной задаче функциях у (х), а лишь на всевозможных линейных комбинациях вида
        
        с постоянными коэффициентами ai, составленных из n первых функций некоторой выбранной системы φ1(x), φ2(х),..., φп (х),... (от удачного выбора этой системы функций зависит эффективность применения метода к решению конкретных задач). Необходимым условием выбора системы функций φ1(х) является требование, чтобы функции уп (х) удовлетворяли условиям уп (хо) = α и yn (x1) = α для всех значений параметров a1. При таком выборе функций уп (х) функционал V [y (x)] превращается в функцию Ф (а1, a2,..., an) коэффициентов ai, последние выбирают так, чтобы эта функция достигала экстремума, т. е. определяют их из системы уравнений
         i=1, 2, ..., n).
         Например, пусть требуется решить задачу о минимуме интеграла
        
        при условии y (0) = y (1) = 0. В качестве функций φi (x) можно взять xi (1 — х), тогда
        
         Если n = 2, то a1 и a2 получаем после вычислений два уравнения
        
        
         Решением этих уравнений являются числа a1 = 71/369 и a2 = 7/41. Следовательно,
         Найденное этим методом приближённое решение уп (х) вариационной задачи при некоторых условиях, касающихся в основном полноты системы функций φi (x), стремится к точному решению у (х), когда n → ∞.
         Метод был предложен в 1908 немецким математиком В. Ритцем (W. Ritz). Теоретическое обоснование метода дано сов. математиком Н. М. Крыловым (1918).
         Метод Галёркина является широким обобщением метода Ритца и применяется главным образом для приближённого решения вариационных и краевых задач, в том числе и тех, которые не сводятся к вариационным. Основная идея метода Галёркина состоит в следующем. Пусть требуется в некоторой области D найти решение дифференциального уравнения
         L [u] = 0 (1)
        (L некоторый дифференциальный оператор, например по двум переменным), удовлетворяющее на границе S области D однородным краевым условиям:
         u = 0. (2)
         Если функция u является решением уравнения (1) в области D, то функция L [u] тождественно равна нулю в этой области и, следовательно, ортогональна (см. Ортогональность) любой функции в области D. Приближённое решение уравнения (1) ищут в виде
        
        где ψi (x, y) (i = 1, 2,..., n) линейно независимые функции, удовлетворяющие краевым условиям (2) и являющиеся первыми n функциями некоторой системы функций ψ1(x, у), ψ2(х, у),..., ψп (х, у),..., полной в данной области. Постоянные коэффициенты ai выбирают так, чтобы функция L [un] была ортогональна в D первым n функциям системы ψi (x, y):
        
         (i=1, 2, ..., n).
         Например, пусть в области D требуется решить уравнение Пуассона
        
        при условии u = 0 на S. Выбирая систему функций ψi (x, y), ищем решение в виде (3). Система уравнений (4) для определения коэффициентов ai имеет вид:
        
         (i=1, 2, ..., n).
         Функции ψi (x, y) можно, в частности, выбирать, пользуясь следующими соображениями. Пусть ω(x, y) — непрерывная функция, имеющая внутри области D непрерывные частные производные второго порядка и такая, что ω(x, y) > 0 внутри D, ω(x, y) = 0 на S. Тогда в качестве системы функций ψi (x, y) можно взять систему, составленную из произведений ω(x, y) на различные степени х и y: D является окружность S радиуса R с центром в начале координат, то можно положить ω(x, y) = R2 — x2 — y2.
         Метод Галёркина применяется при решении широкого класса задач; более общая его формулировка даётся в терминах функционального анализа (См. Функциональный анализ) для решения уравнений вида Au — f = 0, где А — линейный оператор, определённый на линеале, плотном в некотором гильбертовом пространстве H, u — искомый и f — заданный элементы пространства H.
         Метод получил распространение после исследований Б. Г. Галёркина (1915); ранее (1913) он применялся для решения конкретных задач теории упругости И. Г. Бубновым, в связи с чем иногда именуется методом Бубнова — Галёркина. Теоретическое обоснование метода принадлежит М. В. Келдышу (1942).
         Лит.: Галёркин Б. Г., Стержни и пластинки. Ряды в некоторых вопросах упругого равновесия стержней и пластинок, «Вестник инженеров», 1915, т. 1, № 19, с. 897—908; Михлин С. Г., Вариационные методы в математической физике, 2 изд., М. — Л., 1970; Канторович Л. В. и Крылов В. И., Приближённые методы высшего анализа, 5 изд., Л. — М., 1962; Ritz W., Neue Methode zur Lösung gewisser Randwertaufgaben, «Gesellschaft der Wissenschaften zu Göttingen. Math.-physik. Klasse. Nachrichten», Göttingen, 1908; его же, Über еще neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik, «Journal für die reine und angewandte Mathematik», 1909, Bd 135.
         В. Г. Карманов.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Ритца и Галёркина методы" в других словарях:

  • Прямые методы —         в математике, методы решения задач математического анализа. К П. м. обычно относят методы решения дифференциальных, интегральных и интегро дифференциальных уравнений, вариационных задач и т.д. путём построения последовательности функций… …   Большая советская энциклопедия

  • Математическая физика —         теория математических моделей (См. Ритца и Галёркина методы) физических явлений; занимает особое положение и в математике, и в физике, находясь на стыке этих наук.          М. ф. тесно связана с физикой в той части, которая касается… …   Большая советская энциклопедия

  • Приближённое решение —         дифференциальных уравнений, получение аналитических выражений (формул) или численных значений, приближающих с той или иной степенью точности искомое частное решение дифференциального уравнения.          П. р. дифференциальных уравнений в… …   Большая советская энциклопедия

  • Вариационное исчисление —         математическая дисциплина, посвященная отысканию экстремальных (наибольших и наименьших) значений функционалов переменных величин, зависящих от выбора одной или нескольких функций. В. и. является естественным развитием той главы… …   Большая советская энциклопедия

  • Уравнения математической физики —         дифференциальные уравнения с частными производными, а также некоторые родственные уравнения иных типов (интегральные, интегро дифференциальные и т.д.), к которым приводит математический анализ физических явлений. Для теории У. м. ф.… …   Большая советская энциклопедия

  • Бубнова метод —         см. в статье Ритца и Галёркина методы …   Большая советская энциклопедия

  • Дифференциал — (Differential) Определение дифферинциала, дифферинциал функции, блокировка дифферинциала Информация об определении дифферинциала, дифферинциал функции, блокировка дифферинциала Содержание Содержание математический Неформальное описание… …   Энциклопедия инвестора

  • Упругости теория —         раздел механики (См. Механика), в котором изучаются перемещения, деформации и напряжения, возникающие в покоящихся или движущихся упругих телах под действием нагрузки. У. т. теоретическая основа расчётов на прочность, деформируемость и… …   Большая советская энциклопедия

  • УПРУГОСТИ ТЕОРИЯ — раздел механики, в к ром изучаются перемещения, деформации и напряжения, возникающие в покоящихся или движущихся упругих телах под действием нагрузки. У. т. теоретич. основа расчётов на прочность, деформируемость и устойчивость в строит. деле,… …   Физическая энциклопедия

  • Аэроупругость — аэромеханика упругого летательного аппарата, раздел прикладной механики, в котором рассматривается взаимодействие летательного аппарата как упругой системы (упругого летательного аппарата) с воздушной средой. Аэродинамические силы, действующие на …   Энциклопедия техники


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»