Равенство (математич.) это:

Равенство (математич.)
Равенство, отношение взаимной заменимости (подстановочности) объектов, которые именно в силу их взаимной заменимости считают равными. Такое понимание Р. восходит к Г. В. Лейбницу. Взаимозаменимость может быть более или менее полной, что связано с глубиной (или интервалом) Р., но, вообще говоря, она всегда относительна, поскольку приравниваемые объекты ≈ будь то предметы объективного мира или наши мысли (идеи, понятия, высказывания и пр.) ≈ индивидуальны и неповторимы: в понятии «взаимозаменимые объекты» уже содержится посылка о разделяющем их условии (признаке), т. е. индивидуация. Степень полноты взаимозаменимости (размерность Р.) естественно возрастает от сходства к тождеству. В последнем случае говорят просто о неразличимости, которую обычно приводят как критерий логического Р. (тождества), что, однако, неточно, поскольку неразличимость гарантирует, вообще говоря, только Р. в интервале (с точностью до) условий неразличимости, а это последнее, в отличие от логического Р., не связано с обязательным выполнением транзитивности. Тем не менее стало уже традицией говорить о принципе Р. неразличимых, который в языке логики предикатов первого порядка выражается аксиомой (экстенсиональности):

х = у É (j(x) É (у))

и аксиомой х = х, а в языке второго порядка определением:

.

═ Практикуемая в приложениях логики замена этих выражений конечным списком «содержательных» аксиом Р. для всех исходных индивидуальных функций и предикатов рассматриваемой теории с добавлением аксиом рефлексивности (х = х), симметричности (х = у É у = х) и транзитивности (х = y&y = z É x = z) Р. является по существу переходом от чисто логической формулировки Р. к более слабой его формулировке ≈ к Р. в интервале абстракции отождествления по предикатам конкретной Тождество).


═ Лит.: Шрейдер Ю. Равенство, сходство, порядок, М., 1971; Математическая логика, пер. с англ., М., 1973, с. 181≈199.

═ М. М. Новосёлов.


Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Равенство (математич.)" в других словарях:

  • РАВЕНСТВО — одно из основных понятий социальной философии и самой социальной жизни. Основанием для всех видов Р. является формальное Р., которое в зависимости от сферы применения и выбора ценностной основы уравнивания формирует различные содержательные… …   Философская энциклопедия

  • РАВЕНСТВО ( и ) — РАВЕНСТВО (в логике и математике) отношение между выражениями языка логики и математики, верное тогда (и только тогда), когда оба выражения обозначают один и тот же предмет, т.е., когда все, что можно сказать на языке данной теории про объект,… …   Философская энциклопедия

  • ПАРСЕВАЛЯ РАВЕНСТВО — равенство, выражающее квадрат нормы элемента в векторном пространстве со скалярным произведением через квадраты модулей коэффициентов Фурье этого элемента по нек рой ортогональной системе элементов; так, если X нормированное сепарабельное… …   Математическая энциклопедия

  • Дифференциал (математич.) — Дифференциал (от лат. differentia ‒ разность, различие) в математике, главная линейная часть приращения функции. Если функция y = f (x) одного переменного х имеет при х = х0 производную, то приращение Dy = f (x0 + Dx) f (x0) функции f (x) можно… …   Большая советская энциклопедия

  • ИНФОРМАЦИЯ — основное понятие кибернетики. Кибернетика изучает машины и живые организмы исключительно с точки зрения их способности воспринимать определенную П., сохранять эту И. в памяти , передавать ее по каналам связи и перерабатывать ее в сигналы ,… …   Математическая энциклопедия

  • КОЛИЧЕСТВО — филос. категория, отображающая общее в качественно однородных вещах и явлениях. Чтобы выявить в них это общее, необходимо, во первых, установить их однородность, т.е. показать, в каком именно отношении они эквивалентны между собою, во вторых,… …   Философская энциклопедия

  • АЛГЕБРА ЛОГИКИ —         система алгебраич. методов решения логич. задач, а также совокупность задач, решаемых такими методами. А. л. в узком смысле слова алгебраич. (табличное, матричное) построение классич. логики высказываний, в котором рассматриваются… …   Философская энциклопедия

  • ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ — уравнение вида где F заданная действительная функция точки х=(xt, ..., х п )области Dевклидова пространства Е п, и действительных переменных (и(х) неизвестная функция) с неотрицательными целочисленными индексами i1 ,..., in, k=0, ..., т, по… …   Математическая энциклопедия

  • ОЦЕНКА СТАТИСТИЧЕСКАЯ — функция от случайных величин, применяемая для оценки неизвестных параметров теоретич. распределения вероятностей. Методы теории О. с. служат основой современной теории ошибок; обычно в качестве неизвестных параметров выступают измеряемые физич.… …   Математическая энциклопедия

  • МНОГОЗНАЧНАЯ ЛОГИКА — раздел математической логики, изучающий математич. модели логики высказываний. Эти модели отражают две основные черты последней множественность значений истинности высказываний и возможность построения новых более сложных высказываний из заданных …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»