Проективное пространство это:

Проективное пространство
        в первоначальном смысле — евклидово пространство, дополненное бесконечно удалёнными точками, прямыми и плоскостью, называемыми также несобственными элементами (см. Бесконечно удалённые элементы). При этом каждая прямая дополняется одной несобственной точкой, каждая плоскость — одной несобственной прямой, всё пространство — одной несобственной плоскостью; параллельные прямые дополняются общей несобственной точкой, непараллельные — разными; параллельные плоскости дополняются общей несобственной прямой, непараллельные — разными; несобственные точки, дополняющие всевозможные прямые данной плоскости, принадлежат несобственной прямой, дополняющей ту же плоскость; все несобственные точки и прямые принадлежат несобственной плоскости.
         П. п. можно определить аналитически как совокупность классов пропорциональных четверок действительных чисел, не равных одновременно нулю. При этом классы интерпретируются либо как плоскости П. п., а числа называются однородными координатами плоскостей. Отношение инцидентности точки (x1: x2: x3: x4) и плоскости (u1: u2: u3: u4) выражается равенством:n-мерного П. п., играющего важную роль в алгебраической геометрии, причём координатами его могут быть элементы некоторого тела (См. Тело) k. В более общем смысле П. п. — совокупность трёх множеств элементов, называется соответственно точками, прямыми и плоскостями, для которых определены отношения принадлежности и порядка так, что соблюдаются требования аксиом проективной геометрии (См. Проективная геометрия). А. Н. Колмогоров и Л. С. Понтрягин показали, что если П. п. над телом k есть связное компактное топологическое пространство, в котором прямая непрерывно зависит от двух принадлежащих ей точек, и выполняются аксиомы инцидентности, то k есть либо поле действительных чисел, либо поле комплексных чисел, либо тело кватернионов.
         Лит. см. при ст. Проективная геометрия.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Проективное пространство" в других словарях:

  • Проективное пространство — над телом   пространство, состоящее из прямых (одномерных подпространств) некоторого линейного пространства над данным телом. Прямые пространства называются точками проективного пространства. Если имеет размерность , то размерностью… …   Википедия

  • ПРОЕКТИВНОЕ ПРОСТРАНСТВО — совокупность всех подпространств инцидентностной структуры p = , где элементы множества наз. точками, а элементы множества прямыми, I отношение инцидентности. Подпространством инцидентностной структуры p наз. подмножество S множества , для к рого …   Математическая энциклопедия

  • ПРОЕКТИВНОЕ МЕРООПРЕДЕЛЕНИЕ — введение в подмножествах проективного пространства методами проективной геометрии такой метрики, при к рой эти подмножества оказываются изоморфными евклидову, гиперболическому или эллиптическому пространствам. Это достигается выделением из класса …   Математическая энциклопедия

  • Проективное преобразование —         взаимно однозначное отображение проективной плоскости (См. Проективная плоскость) или проективного пространства (См. Проективное пространство) в себя, при котором точки, лежащие на прямой, переходят в точки, также лежащие на прямой… …   Большая советская энциклопедия

  • Проективное покрытие — в геоботанике показатель, определяющий относительную площадь проекции отдельных видов или их групп, ярусов и т.д. фитоценоза на поверхность почвы. Проективное покрытие является одним из основных показателей обилия в фитоценологии. Различают общее …   Википедия

  • ПРОЕКТИВНОЕ МНОЖЕСТВО — множество, к рое может быть получено из борелевских множеств повторным применением операций проектирования и перехода к дополнению. П. м. классифицируются по классам, образующим проективную иерархию. Пусть I=ww бэровское пространство… …   Математическая энциклопедия

  • ПРОЕКТИВНОЕ ПРЕДСТАВЛЕНИЕ — группы G гомоморфизм этой группы в группу PGL(V).проективных преобразований проективного пространства P(V), связанного с векторным пространством Vнад полем k. С каждым П. п. ср группы Gсвязано центральное расширение этой группы (*) где р естеств …   Математическая энциклопедия

  • ПРОЕКТИВНОЕ ПРЕОБРАЗОВАНИЕ — взаимно однозначное отображение F .проективного пространства ПД на себя, сохраняющее отношение порядка частично упорядоченного (по включению) множества всех подпространств П n, т. е. отображение П n в себя такое, что 1) если , то ; 2) для каждого …   Математическая энциклопедия

  • Трёхмерное пространство — Трёхмерная метрика пространства …   Википедия

  • Двумерное пространство — У этого термина существуют и другие значения, см. 2D. У этого термина существуют и другие значения, см. Пространство. Двумерное пространство (иногда говорят двухмерное пространство) геометрическая модель плоской проекции физического мира, в… …   Википедия

Книги



Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»