Практическая астрономия это:

Практическая астрономия
        раздел астрометрии (См. Астрометрия), посвященный учению об астрономических инструментах и способах определения из астрономических наблюдений времени, географических координат и азимутов направлений. В зависимости от условий, в которых решаются задачи П. а., она подразделяется на геодезическую астрономию (См. Геодезическая астрономия), мореходную астрономию (См. Мореходная астрономия) и авиационную астрономию (См. Авиационная астрономия). Способы П. а. основываются на правилах сферической астрономии (См. Сферическая астрономия) и использовании звёздных каталогов, составлением которых занимается фундаментальная астрометрия.
         П. а. возникла в глубокой древности под влиянием задач хозяйственной жизни человеческого общества.
         Применяемые в П. а. инструменты позволяют измерять углы в горизонтальной и вертикальной плоскостях и фиксировать моменты прохождения светил через Вертикалы и Альмукантараты. Среди этих инструментов: универсальный инструмент, зенит-телескоп, вертикальный круг, переносной пассажный инструмент, зенитная фотографическая труба, мореходный и авиационный секстанты и др. (см. Астрономические инструменты и приборы). Для измерения времени служат кварцевые часы и морские хронометры. При определении долгот используется аппаратура для приёма радиосигналов времени.
         В П. а. применяются следующие способы определения местного времени s (что равносильно определению поправки часов u), широты φ долготы λ и азимута А направления на земной предмет. (Ниже использованы обозначения: а — азимут, z — зенитное расстояние, α прямое восхождение, δ — склонение, t — часовой угол небесного светила, s — местное время, Т — показания часов в момент наблюдений.)
         1) Определение u и φ по измерениям z светила σ. Из параллактического треугольника PZσ (Р — полюс мира, Z — зенит, σ место светила; рис. 1) следует, что
         cosz = sinφ sinδ + cosφ cosδcost, (1)
         где
         t = Т + u — α. (2)
         Найдя в астрономическом каталоге α и δ наблюдаемого светила и измерив его зенитное расстояние z в момент Т, из уравнений (1) и (2) можно вычислить поправку часов u, если известна φ, или вычислить φ, если известна u. Если неизвестны u и φ, то решение уравнений (1) и (2) ведут способом последовательных приближений или наблюдают две звезды: одну вблизи меридиана, другую — вблизи первого вертикала. Полученные две системы уравнений (1) и (2) решают совместно. Для моментов кульминаций справедливы уравнения:
         φ = δs + Zs и φ = δNZN (3)
        (индексы S и N обозначают светила, кульминирующие, соответственно, к югу и северу от зенита). Т. к. измерить z строго в меридиане нельзя, то измеряют его вблизи меридиана, вводя при вычислениях необходимую поправку.
         2) Определение u и φ по наблюдениям пар звёзд на равных зенитных расстояниях z. В 1874 русский геодезист Н. Я. Цингер предложил способ определения u по наблюдениям моментов прохождения двух звёзд через один и тот же альмукантарат (см. Цингера способ). Звёзды наблюдаются вблизи первого вертикала: одна — на востоке, другая на западе, симметрично относительно меридиана. Аналогичный способ для определения φ по наблюдениям пары звёзд на равных зенитных расстояниях вблизи меридиана предложил в 1887 русский путешественник М. В. Певцов (см. Певцова способ). Оба способа характеризуются простотой наблюдений и высокой точностью получаемых результатов.
         3) Совместное определение u и φ. Советские учёные В. В. Каврайский (1924—36) и А. В. Мазаев (1943—45) предложили способы совместного определения u и φ (см. Каврайского способ и Мазаева способ). По способу Каврайского наблюдаются четыре звезды на попарно равных зенитных расстояниях z; по способу Мазаева — серия звёзд в альмукантарате с z = 45° или z = 30°.
         4) Определение φ по способу Талькотта. Этот способ, предложенный в 1857 американским геодезистом А. Талькоттом, основан на измерении малой разности зенитных расстояний двух звёзд, кульминирующих по разные стороны от зенита (см. Талькотта способ). Полусумма правых и левых частей равенств (3) даёт:
        
         Звёзды выбираются так, чтобы разность их зенитных расстояний была в пределах диаметра рабочей части поля зрения трубы, т. е. не превышала 10—15’, а разность прямых восхождений отличалась бы на 5—20 мин (при наблюдениях обеих звёзд в верхней кульминации). Для наблюдений труба зенит-телескопа или универсального инструмента устанавливается на среднее зенитное расстояние пары в азимуте 0° для наблюдения звезды, кульминирующей к югу от зенита, и 180° — к северу от него. Величина Zs — ZN измеряется окулярным микрометром. Способ нашёл широкое применение, в частности на международных станциях, изучающих движение земных полюсов.
         5) Определение u и φ из наблюдений на зенитной фотографической трубе. В некоторых обсерваториях для служб времени (См. Служба времени) и служб широты (См. Служба широты) определяют u и φ из совместных наблюдений на фотографических зенитных трубах. Изображение звезды фиксируется на движущейся с её скоростью фотографической пластинке с маркировкой на ней моментов времени. Звёзды наблюдают в узкой зенитной зоне, ограниченной рабочей частью поля зрения трубы. Ось инструмента постоянно направлена в зенит, что контролируется ртутным горизонтом.
         6) Определение u пассажным инструментом. Этот способ широко применяется в практике служб времени и при высокоточных определениях долгот. Наблюдаются моменты прохождений серии звёзд через меридиан с регистрацией их или контактным микрометром, или с помощью фотоумножителей. Поправки определяются по формуле
         u = α — Т. (5)
         Подобный способ применительно к универсальному инструменту предложил русский геодезист Н. Д. Павлов (1912). В некоторых случаях определение u производится по наблюдению прохождений звёзд в вертикале Полярной (способ Деллена (См. Дёллен)).
         7) Определение λ. Восточная долгота места наблюдения связана со всемирным временем S и местным s соотношением:
         λ = s — S = Т + u — S; (6)
        u — определяется одним из изложенных выше способов, а S — путём приёма радиосигналов времени, транслируемых в течение суток многими радиостанциями.
         8) Определение А. Наиболее распространённый способ основан на измерении универсальным инструментом горизонтального угла между направлениями на Полярную Мσ (рис. 2) и земной предмет М и вычислении азимута Полярной в момент наблюдения s. Для этого служит соотношение:
         tgα
        где t = s — α. Азимут А предмета находится из уравнения
         А = а + М — Мσ. (8)
         В геодезической практике часто применяется способ определения азимута, основанный на наблюдениях моментов прохождения звёзд с большими z (50°—70°) вблизи меридиана.
         9) Определение φ и λ способом высотных линий положений, предложенным американским моряком Т. Сомнером в 1843 (см. Сомнера способ). В мореходной и авиационной астрономии, где требуется меньшая точность, но большая быстрота в определении φ и λ, широко применяется способ высотных линий положения, сущность которого ясна из рис. 3. Находясь в точке m, географические координаты которой необходимо определить, измеряют зенитное расстояние z1 небесного светила σ1 (с координатами α1 и δ1) и вычисляют географические координаты проекции ∑1, светила на поверхность Земли — т. н. географические места светила — по формулам φ1 = δ; λ1 = α1 S (долгота восточная). Окружность радиуса z1 с центром в ∑1 проходит на глобусе через точку m. Измерив z2 другого светила, проводят другую окружность радиусом z2 с центром в ∑2; в одной из двух точек пересечения этих окружностей расположена искомая точка m (выбор нужной точки не представляет затруднений, т.к. приближённое. место наблюдения бывает известно). На практике пользуются не глобусом, а картой, прочерчивая на ней отрезки кривых, отождествляемые с дугами окружности вблизи их пересечений. Эти отрезки называют высотными линиями положений или линиями Сомнера (см. Позиционная линия).
         Все проблемы П. а. имеют большое значение для астрономии, геодезии, геофизики. Определения φ, λ и А необходимы для ориентирования триангуляционных сетей, служащих опорой для картографических работ и для изучения фигуры Земли. Изучение изменяемости φ привело к установлению периодических и вековых движений земных полюсов. Переопределение долгот обсерваторий в разные эпохи доставляет необходимые данные для изучения дрейфа континентов.
         Лит.: Блажко С. Н., Курс практической астрономии, 3 изд., М. — Л., 1951; Белобров А. П., Мореходная астрономия, Л., 1954; Воробьев Л. М., Астрономическая навигация летательных аппаратов, М., 1968.
         В. П. Щеглов.
        Рис. 1 к ст. Практическая астрономия.
        Рис. 1 к ст. Практическая астрономия.
        Рис. 2 к ст. Практическая астрономия.
        Рис. 2 к ст. Практическая астрономия.
        Рис. 3 к ст. Практическая астрономия.
        Рис. 3 к ст. Практическая астрономия.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Практическая астрономия" в других словарях:

  • ПРАКТИЧЕСКАЯ АСТРОНОМИЯ — учение об астрономических инструментах и способах определения из астрономических наблюдений времени, географических координат и азимутов направлений. Практическая астрономия подразделяется на геодезическую, мореходную и авиационную …   Большой Энциклопедический словарь

  • Практическая астрономия — раздел астрономии, изучающий устройство и правила пользования астрономическими инструментами. С помощью практической астрономии судоводители, наблюдая небесные светила, могут определить координаты места корабля, поправку курсоуказания, проверяют… …   Морской словарь

  • практическая астрономия — учение об астрономических инструментах и способах определения из астрономических наблюдений времени, географических координат и азимутов направлений. Практическая астрономия подразделяется на геодезическую, мореходную и авиационную. * * *… …   Энциклопедический словарь

  • Практическая астрономия — учение об астрономических инструментах и способах определения из астрономических наблюдений времени, географических координат и азимутов направлений. Практическая астрономия подразделяется на геодезическую, мореходную и авиационную …   Астрономический словарь

  • Практическая астрономия — учит наиболее целесообразно располагать, производить и обрабатывать наблюдения астрономическими инструментами, необходимые для решения той или другой задачи астрономии. Существенную часть ее составляет теория инструментов (об этом см.… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • ПРАКТИЧЕСКАЯ АСТРОНОМИЯ — учение об астр. инстр тах и способах определения из астр. наблюдений времени, геогр. координат и азимутов направлений. П. а. подразделяется на геодезическую, мореходную и авиационную …   Естествознание. Энциклопедический словарь

  • Астрономия Древней Греции — Астрономия Древней Греции  астрономические познания и взгляды тех людей, которые писали на древнегреческом языке, независимо от географического региона: сама Эллада, эллинизированные монархии Востока, Рим или ранняя Византия. Охватывает… …   Википедия

  • Астрономия — I Астрономия (греч. astronomía, от Астро... и nómos закон)         наука о строении и развитии космических тел, их систем и Вселенной в целом.          Задачи и разделы астрономии. А. исследует тела Солнечной системы, звёзды, галактические… …   Большая советская энциклопедия

  • Астрономия — I Астрономия (греч. astronomía, от Астро... и nómos закон)         наука о строении и развитии космических тел, их систем и Вселенной в целом.          Задачи и разделы астрономии. А. исследует тела Солнечной системы, звёзды, галактические… …   Большая советская энциклопедия

  • астрономия — и; ж. [греч. astron звезда и nomos закон]. Комплексная наука о строении и развитии небесных тел, их систем и Вселенной в целом. * * * астрономия (от астро... и греч. nómos  закон), наука о строении и развитии космических тел, образуемых ими… …   Энциклопедический словарь

Книги

Другие книги по запросу «Практическая астрономия» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»