Полупроводниковый лазер это:

Полупроводниковый лазер
        полупроводниковый квантовый генератор, Лазер с полупроводниковым кристаллом в качестве рабочего вещества. В П. л., в отличие от лазеров др. типов, используются излучательные Квантовые переходы не между изолированными уровнями энергии атомов, молекул и ионов, а между разрешенными энергетическими зонами кристалла (см. Твёрдое тело). В П. л. возбуждаются и излучают (коллективно) атомы, слагающие кристаллическую решётку. Это отличие определяет важную особенность П. л. — малые размеры и компактность (объём кристалла Полупроводниковый лазер10-6—10-2см3). В П. л. удаётся получить показатель оптич. усиления до 104 см-1 (см. Усиления оптического показатель), хотя обычно для возбуждения генерации лазера достаточны и меньшие значения (см. ниже). Другими практически важными особенностями П. л. являются: высокая эффективность преобразования электрической энергии в энергию когерентного излучения (до 30—50%); малая инерционность, обусловливающая широкую полосу частот прямой модуляции (более 109 Ггц); простота конструкции; возможность перестройки длины волны λ излучения и наличие большого числа полупроводников, непрерывно перекрывающих интервал длин волн от 0,32 до 32 мкм.
         Люминесценция в полупроводниках. При рекомбинации электронов проводимости и дырок в полупроводниках (См. Полупроводники) освобождается энергия, которая может испускаться в виде квантов излучения (Люминесценция) или передаваться колебаниями кристаллической решётки (См. Колебания кристаллической решётки), т. е. переходить в тепло. Доля излучательных актов рекомбинации у таких полупроводников, как Ge и Si, очень мала, однако в некоторых полупроводниках (например, GaAs, CdS) при очистке и легировании она может приближаться к 100%.
         Для наблюдения люминесценции необходимо применить какой-либо способ возбуждения (накачки) кристалла, т. е. способ генерации избыточных электронно-дырочных пар (светом, быстрыми электронами или электрическим полем). При малой скорости образования избыточных электронно-дырочных пар излучательная рекомбинация носит беспорядочный (спонтанный) характер и используется в нелазерных полупроводниковых источниках света (см. Светоизлучающий диод). Чтобы получить генерацию когерентного излучения, т. е. лазерный эффект, необходимо создать особое состояние люминесцирующего кристалла — состояние с инверсией населённостей (См. Инверсия населённостей).
         Рекомбинация электронно-дырочной пары может сопровождаться испусканием кванта излучения, близкого по энергии к ширине запрещенной зоны ΔE полупроводника (рис. 1, а); при этом длина волны λ ≈ hc/ΔE, где h — Планка постоянная, с — скорость света.
         Инверсия населённостей в полупроводниках. Оптическое квантовое усиление в полупроводнике может наблюдаться в том случае, если зона проводимости вблизи её дна Ec заполнена электронами в большей степени, чем валентная зона вблизи её потолка Eυ. Преобладание числа переходов с испусканием квантов над переходами с их поглощением обеспечивается тем, что на верхних уровнях находится больше электронов, чем на нижних, тогда как вероятности вынужденных переходов в обоих направлениях одинаковы. Заполнение зон принято описывать с помощью т. н. квазиуровней Ферми, отделяющих состояния с вероятностью заполнения уровней больше 1/2 от состояний с вероятностью заполнения меньше 1/2. Если El — квазиуровни Ферми для электронов и дырок, то условие инверсии населённостей относительно переходов с энергией (где ν — частота излучения) выражается формулой:
         El > hν.
         Для поддержания такого состояния необходима высокая скорость накачки, восполняющей убыль электронно-дырочных пар вследствие излучательных переходов. Благодаря этим вынужденным переходам поток излучения нарастает (рис. 1, б), т. е. реализуется оптическое усиление.
         В П. л. применяют следующие методы накачки: 1) инжекция носителей тока через р—n-переход (см. Электронно-дырочный переход), гетеропереход или контакт металл — полупроводник (инжекционные лазеры); 2) накачка пучком быстрых электронов; 3) оптическая накачка; 4), накачка путём пробоя в электрическом поле. Наибольшее развитие получили П. л. первых двух типов.
         Инжекционные лазеры. Лазер на р—n-переходе представляет собой полупроводниковый диод, у которого две плоскопараллельные поверхности, перпендикулярные р—n-переходу (рис. 2), образуют оптический резонатор (коэффициент отражения от граней кристалла Полупроводниковый лазер20—40%). Инверсия населённостей достигается при большой плотности прямого тока через диод (порог генерации соответствует току Полупроводниковый лазер1 кА/см2, а при пониженной температуре Полупроводниковый лазер 102 A/см2, рис. 3). Для получения достаточно интенсивной инжекции применяют сильно легированные полупроводники.
         Инжекционные лазеры на гетеропереходе (появились в 1968) представляют собой, например, двусторонние гетероструктуры (рис. 4). Активный слой (GaAs) заключён между двумя полупроводниковыми гетеропереходами (См. Полупроводниковый гетеропереход), один из которых (типа р—n) служит для инжекции электронов, а второй (типа р—р) отражает инжектированные электроны, препятствуя их диффузионному растеканию из активного слоя (электронное ограничение). При одинаковом токе накачки в активном слое гетероструктуры достигается большая концентрация электронно-дырочных пар и, следовательно, большее оптическое усиление, чем в П. л. На р—n-переходах. Другое преимущество гетероструктуры состоит в том, что образованный активным слоем диэлектрический волновод удерживает излучение, распространяющееся вдоль структуры, в пределах активного слоя (оптическое ограничение), благодаря чему оптическое усиление используется наиболее эффективно. Для П. л. на гетеропереходе необходимая плотность тока при Т = 300 К более чем в 10 раз ниже, чем у П. л. на р—n-переходе, что позволяет осуществить непрерывный режим генерации при температуре до 350 К.
         П. л. инжекционного типа (рис. 5) работают в импульсном режиме с выходной мощностью до 100 вт и в непрерывном режиме с мощностью более 10 вт (GaAs) в ближней инфракрасной (ИК) области (λ = 850 нм) и около 10 мвт (PbxSn1-xTe) в средней ИК области (λ = 10 мкм). Недостаток инжекционных лазеров — слабая направленность излучения, обусловленная малыми размерами излучающей области (большая дифракционная расходимость), и относительно широкий спектр генерации по сравнению с газовыми лазерами.
         П. л. с электронной накачкой. При бомбардировке полупроводника быстрыми электронами с энергией W Полупроводниковый лазер 103—106 эв в кристалле рождаются электронно-дырочные пары; количество пар, создаваемое одним электроном, Полупроводниковый лазерW/3ΔE. Этот способ применим к полупроводникам с любой шириной запрещенной зоны. Выходная мощность П. л. достигает 106 вт, что объясняется возможностью накачки большого объёма полупроводника (рис. 6). П. л. с электронной накачкой содержит электронный прожектор, фокусирующую систему и полупроводниковый кристалл в форме оптического резонатора, помещенные в вакуумную колбу (рис. 7). Техническое достоинство П. л. с электронной накачкой — возможность быстрого перемещения (сканирования) электронного пучка по кристаллу, что даёт дополнительный способ управления излучением. Т. к. заметная часть энергии электронного пучка тратится на разогрев решётки кристалла, то кпд ограничен (Полупроводниковый лазер1/3); на каждую электронно-дырочную пару расходуется энергия 3ΔE, а испускается фотон с энергией Полупроводниковый лазерΔE
         Полупроводниковые лазерные материалы. В П. л. используются главным образом бинарные соединения типа А3В5, А2В6, А4В6 и их смеси — Твёрдые растворы (см. табл.). Все они — прямозонные полупроводники, в которых межзонная излучательная рекомбинация может происходить без участия фононов или др. электронов и поэтому имеет наибольшую вероятность среди рекомбинационных процессов. Кроме перечисленных в табл. веществ, имеется ещё некоторое количество перспективных, но мало изученных материалов, пригодных для П. л., например др. твёрдые растворы. В твёрдых растворах величина ΔE зависит от химического состава, благодаря чему можно изготовить П. л. на любую длину волны от 0,32 до 32 мкм.
         Применение П. л.: 1) Оптическая связь (портативный оптический телефон, многоканальные стационарные линии связи); 2) Оптическая локация и специальная автоматика (дальнометрия, высотометрия, автоматическое слежение и т.д.); 3) Оптоэлектроника (излучатель в Оптроне, логические схемы, адресные устройства, голографические системы памяти, см. Голография), 4) техника специального освещения (скоростная фотография, оптическая накачка др. лазеров и др.); 5) обнаружение загрязнений и примесей в различных средах; 6) лазерное проекционное телевидение (рис. 8).
         Полупроводниковые лазеры (Э — накачка электронным пучком; О — оптическая накачка; И — инжекционные лазеры; П — накачка пробоем в электрическом поле)
        ------------------------------------------------------------------------------------------------------------------------------------
        | Полупроводник      | Длина волны            | Максимальная         | Способ накачки      |
        |                              | излучения, мкм        | рабочая                   |                               |
        |                              |                                 | температура, К        |                               |
        |----------------------------------------------------------------------------------------------------------------------------------|
        | ZnS                       | 0,32                         | 77                            | Э                            |
        | ZnO                       | 0,37                         | 77                            | Э                            |
        | Zn1-xCdxS               | 0,32—0,49                | 77                            | Э                            |
        | ZnSe                     | 0,46                         | 77                            | Э                            |
        | CdS                       | 0,49—0,53                | 300                          | Э, О, П                   |
        | ZnTe                     | 0,53                         | 77                            | Э                            |
        | CdS1-xSex              | 0,49—0,68                | 77                            | Э, О                       |
        | CdSe                     | 0,68—0,69                | 77                            | Э, О                       |
        | CdTe                     | 0,79                         | 77                            | Э                            |
        |----------------------------------------------------------------------------------------------------------------------------------|
        | GaSe                     | 0.59                         | 77                            | Э, О                       |
        | GaAs1-xPx              | 0,62—0,9                  | 300                          | Э, О, И                   |
        | AlxGa1-xAs             | 0,62—0,9                  | 300                          | О, И                       |
        | InxGa1-xP                | 0,60—0,91                | 77                            | О, И                       |
        | GaAs                     | 0,83—0,90                | 450                          | Э, О, И, П               |
        | lnP                        | 0,90—0,91                | 77                            | О, И, П                   |
        | InxGa1-xAs              | 0,85—3,1                  | 300                          | О, И                       |
        | InP1-xAsx                | 0,90—3,1                  | 77                            | О, И                       |
        | InAs                      | 3,1—3,2                   | 77                            | Э, О, И                   |
        | InSb                      | 5,1—5,3                   | 100                          | Э, О, И                   |
        |----------------------------------------------------------------------------------------------------------------------------------|
        | PbS                       | 3,9—4,3                   | 100                          | Э, И                        |
        | PbS1-xSx                | 3,9—8,5                   | 77                            | О, И                       |
        | PbTe                     | 6,4—6,5                   | 100                          | Э, О, И                   |
        | PbSe                     | 8,4—8,5                   | 100                          | Э, О, И                   |
        | PbxSn1-xTe             | 6,4—31,8                  | 100                          | Э, О, И                   |
        ------------------------------------------------------------------------------------------------------------------------------------
        
         Историческая справка. Первая работа о возможности использования полупроводников для создания лазера была опубликована в 1959 Н. Г. Басовым, Б. М. Вулом и Ю. М. Поповым. Применение р—n-переходов для этих целей было предложено в 1961 Н. Г. Басовым, О. Н. Крохиным, Ю. М. Поповым. П. л. на кристалле GaAs впервые были осуществлены в 1962 в лабораториях Р. Холла, М. И. Нейтена и Н. Холоньяка (США). Им предшествовало исследование излучательных свойств р—n-переходов, показавшее, что при большом токе появляются признаки вынужденного излучения (Д. Н. Наследов, С. М. Рыбкин с сотрудниками, СССР, 1962). В СССР фундаментальные исследования, приведшие к созданию П. л., были удостоены Ленинской премии в 1964 (Б. М. Вул, О. Н. Крохин, Д. Н. Наследов, А. А. Рогачёв, С. М. Рыбкин, Ю. М. Попов, А. П. Шотов, Б. В. Царенков). П. л. с электронным возбуждением впервые осуществлен в 1964 Н. Г. Басовым, О. В. Богданкевичем, А. Г. Девятковым. В этом же году Н. Г. Басов, А. З. Грасюк и В. А. Катулин сообщили о создании П. л. с оптической накачкой. В 1963 Ж. И. Алферов (СССР) предложил использовать гетероструктуры для П. л. Они были созданы в 1968 Ж. И. Алферовым, В. М. Андреевым, Д. З. Гарбузовым, В. И. Корольковым, Д. Н. Третьяковым, В. И. Швейкиным, удостоенными в 1972 Ленинской премии за исследования гетеропереходов и разработку приборов на их основе.
         Лит.: Басов Н. Г.. Крохин О. Н., Попов Ю. М., Получение состояний с отрицательной температурой в р—n-переходах вырожденных полупроводников, «Журнал экспериментальной и теоретической физики», 1961, т. 40, в. 6; Басов Н. Г., Полупроводниковые квантовые генераторы, «Успехи физических наук», 1965, т. 85, в. 4; Пилкун М., Инжекционные лазеры, «Успехи физических наук», 1969, т. 98, в. 2; Елисеев П. Г., Инжекционные лазеры на гетеропереходах, «Квантовая электроника», 1972, № 6 (12); Басов Н. Г., Никитин В. В., Семенов А. С., Динамика излучения Инжекционных полупроводниковых лазеров, «Успехи физических наук», 1969, т. 97, в. 4.
         П. Г. Елисеев, Ю. М. Попов.
        
        Рис. 1. Энергетические схемы: а — накачки и излучательной рекомбинации в полупроводнике; б — оптического усиления при наличии инверсии населённостей состояний вблизи краев зон — дна Ес зоны проводимости и потолка Еν валентной зоны; ΔЕ — ширина запрещенной зоны,
        Рис. 2. Инжекционный лазер на р-n-переходе.
        Рис. 2. Инжекционный лазер на р-n-переходе.
        Рис. 3. Схема энергетических зон в р-n-переходе: а — при отсутствии тока; б — при сильном прямом токе; носители диффундируют в области, прилегающие к переходу, образуя с основными носителями избыточные электронно-дырочные пары.
        Рис. 3. Схема энергетических зон в р-n-переходе: а — при отсутствии тока; б — при сильном прямом токе; носители диффундируют в области, прилегающие к переходу, образуя с основными носителями избыточные электронно-дырочные пары.
        Рис. 4. а — лазер на гетеропереходе (двусторонняя гетероструктура), б — его энергетическая схема.
        Рис. 4. а — лазер на гетеропереходе (двусторонняя гетероструктура), б — его энергетическая схема.
        Рис. 6. Схематическое изображение полупроводниковых лазеров с электронной накачкой: а — поперечной, б — продольной.
        Рис. 6. Схематическое изображение полупроводниковых лазеров с электронной накачкой: а — поперечной, б — продольной.
        Рис. 8. Схема проекционного лазерного телевизора: 1 — электронная пушка; 2 — фокусирующая и отклоняющая система; 3 — полупроводниковый кристалл — резонатор; 4 — объектив; 5 — экран.
        Рис. 8. Схема проекционного лазерного телевизора: 1 — электронная пушка; 2 — фокусирующая и отклоняющая система; 3 — полупроводниковый кристалл — резонатор; 4 — объектив; 5 — экран.
        Рис. 7. Полупроводниковый лазер с электронной накачкой в отпаянной вакуумной трубке.
        Рис. 7. Полупроводниковый лазер с электронной накачкой в отпаянной вакуумной трубке.
        Рис. 5. Образцы инжекционных лазеров.
        Рис. 5. Образцы инжекционных лазеров.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Полупроводниковый лазер" в других словарях:

  • ПОЛУПРОВОДНИКОВЫЙ ЛАЗЕР — лазер на основе полупроводникового кристалла. В отличие от лазеров др. типов, в П. л. используются излучательные квант. переходы между разрешёнными энергетич. зонами, а не дискр. уровнями энергии (см. ПОЛУПРОВОДНИКИ). В полупроводниковой активной …   Физическая энциклопедия

  • ПОЛУПРОВОДНИКОВЫЙ ЛАЗЕР — лазер, активная среда которого полупроводниковый кристалл. Полупроводниковый лазер имеет малые размеры (50 мкм 1 мм), высокий кпд (до 50%), возможность спектральной перестройки. Полупроводниковый лазер генерирует излучение в диапазоне длин волн 0 …   Большой Энциклопедический словарь

  • Полупроводниковый лазер — Полупроводниковый лазер  твердотельный лазер, в котором в качестве рабочего вещества используется полупроводник. В таком лазере, в отличие от лазеров других типов (в том числе и других твердотельных), используются излучательные переходы не… …   Википедия

  • полупроводниковый лазер — Ндп. полупроводниковый квантовый генератор ПКГ Лазер с полупроводниковым активным элементом. [ГОСТ 15093 90] Недопустимые, нерекомендуемые полупроводниковый квантовый генератор ПКГ Тематики лазерное оборудование EN semiconductor laser …   Справочник технического переводчика

  • полупроводниковый лазер — лазер, активная среда которого  полупроводниковый кристалл. Полупроводниковый лазер имеет малые размеры (длина резонатора 50 мкм  1 мм), высокий кпд (до 50%), возможность спектральной перестройки. Полупроводниковые лазеры генерируют излучение в… …   Энциклопедический словарь

  • полупроводниковый лазер — puslaidininkinis lazeris statusas T sritis Standartizacija ir metrologija apibrėžtis Lazeris su puslaidininkine aktyviąja terpe. atitikmenys: angl. semiconductor laser vok. Halbleiterlaser, m rus. полупроводниковый лазер, m pranc. laser à semi… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • полупроводниковый лазер — puslaidininkinis lazeris statusas T sritis chemija apibrėžtis Lazeris su puslaidininkine aktyviąja terpe. atitikmenys: angl. junction laser; semiconductor laser rus. полупроводниковый лазер …   Chemijos terminų aiškinamasis žodynas

  • полупроводниковый лазер — puslaidininkinis lazeris statusas T sritis fizika atitikmenys: angl. semiconductor laser vok. Halbleiterlaser, m rus. полупроводниковый лазер, m pranc. laser à semi conducteur, m …   Fizikos terminų žodynas

  • ПОЛУПРОВОДНИКОВЫЙ ЛАЗЕР — лазер, в к ром активной средой служат полупроводники (арсенид галлия GaAs, сульфид кадмия CdS, сульфид свинца PbS и др.) или их сплавы [(Ga, Al)As, GaAs InP и др.]. Преобразование приложенной электрич. энергии в лазерное излучение в П. л.… …   Большой энциклопедический политехнический словарь

  • ПОЛУПРОВОДНИКОВЫЙ ЛАЗЕР — лазер, активная среда к рого полупроводн. кристалл. П. л. имеет малые размеры (длина резонатора 50 мкм 1 мм), высокий кпд (до 50%), возможность спектральной перестройки. П. л. генерируют излучение в диапазоне длин волн 0,3 30 мкм. Наиб.… …   Естествознание. Энциклопедический словарь

Книги



Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»