Покрытие (в геометрии) это:

Покрытие (в геометрии)
Покрытие, совокупность точечных множеств (геометрических фигур), объединение которых образует или содержит данное множество (данную фигуру); например, диагональ прямоугольника разбивает его на два треугольника, образующих П. данного прямоугольника. Чаще всего рассматриваются конечные П. (т. е. П., состоящие из конечного числа элементов); если все элементы П. по диаметру меньше данного положительного e, то говорят об e-покрытии. Ограниченный кусок при любом e > 0 допускает конечное e-покрытие замкнутыми множествами, пересекающимися не более чем по три, но (при достаточно малом e) не допускает конечного e-покрытия замкнутыми множествами, пересекающимися лишь по два: площадь в городе может быть замощена сколь угодно мелкой брусчаткой так, что камни этой мостовой будут примыкать лишь по три, и примыканий по три избежать нельзя. Аналогично, при заполнении объёма кирпичной кладкой можно добиться того, что кирпичи будут примыкать лишь по четыре, но нельзя добиться того, чтобы были лишь примыкания по три. Отсюда важность понятия кратности П.: говорят, что кратность П. (данного множества) не превосходит числа n, если каждая точка рассматриваемого множества принадлежит не более чем n элементам данного покрытия. Таким образом, кратность конечных П. позволяет характеризовать число измерений пространства. В топологии П. являются одним из мощных средств исследования различных геометрических свойств множеств. П. С. Александров.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Покрытие (в геометрии)" в других словарях:

  • Покрытие (в геометрии) — Покрытие в математике  это семейство множеств таких, что их объединение содержит заданное множество. Обычно понятие покрытия рассматривается в контексте общей топологии. Содержание 1 Определения 2 Связанные определения 3 Свойства …   Википедия

  • ПОКРЫТИЕ — множества X любое семейство подмножеств этого множества, объединение к рого есть X. 1) Под П. топологического пространства, равномерного пространства и вообще какого либо множества, наделенного тем или иным строением, понимают произвольное П.… …   Математическая энциклопедия

  • Бессель Ф. В. — Фридрих Вильгельм Бессель Friedrich Wilhelm Bessel Дата рождения: 22 июля 1784 Место рождения: Минден, Вестфалия сейчас Германия Дата смерти: 17 марта 1 …   Википедия

  • 2010 год в науке — 2008 – 2009  2010  2011 – 2012 См. также: Другие события в 2010 году 2010 год в СНГ объявлен Годом науки и инноваций.[1] Содержание 1 …   Википедия

  • Словарь масонских терминов — Эта страница глоссарий. Масонство …   Википедия

  • Электричество — (Electricity) Понятие электричество, получение и применение электричества Информация о понятии электричество, получение и применение электричества Содержание — это понятие, выражающее свойства и явления, обусловленные структурой физических… …   Энциклопедия инвестора

  • Схема (математика) — В алгебраической геометрии схема  это абстракция, позволяющая связать единым образом коммутативную алгебру и дифференциальную геометрию и переносить идеи из одной области в другую. В первую очередь понятие схемы позволяет перенести… …   Википедия

  • Металлизация —         покрытие поверхности изделия металлами и сплавами для сообщения физико химических и механических свойств, отличных от свойств металлизируемого (исходного) материала. М. применяют для защиты изделий от коррозии, износа, эрозии, в… …   Большая советская энциклопедия

  • ГЛАВНЫЙ G-ОБЪЕКТ — в топологизированной категории понятие теории категорий, частные случаи которого главное расслоение втопологии, главное однородное пространство в алгеб раич. геометрии и др. Пусть G групповой объект категории С с произведениями и финальным… …   Математическая энциклопедия

  • Топология — (от греч. tоpos место и …логия (См. ...Логия)         часть геометрии, посвященная изучению феномена непрерывности (выражающегося, например, в понятии предела). Разнообразие проявлений непрерывности в математике и широкий спектр различных… …   Большая советская энциклопедия

Книги

Другие книги по запросу «Покрытие (в геометрии)» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»