Поверхность это:

Поверхность
        одно из основных геометрических понятий. При логическом уточнении этого понятия в разных отделах геометрии ему придаётся различный смысл.
         1) В школьном курсе геометрии рассматриваются плоскости, многогранники, а также некоторые кривые поверхности. Каждая из кривых П. определяется специальным способом, чаще всего как множество точек, удовлетворяющих некоторым условиям. Например, П. шара — множество точек, отстоящих на заданном расстоянии от данной точки. Понятие «П.» лишь поясняется, а не определяется. Например, говорят, что П. есть граница тела или след движущейся линии.
         2) Математически строгое определение П. основывается на понятиях топологии. При этом основным является понятие простой поверхности, которую можно представить как кусок плоскости, подвергнутый непрерывным деформациям (растяжениям, сжатиям и изгибаниям). Более точно, простой П. называется образ гомеоморфного отображения (т. е. взаимно однозначного и взаимно непрерывного отображения) внутренности квадрата (см. Гомеоморфизм). Этому определению можно дать аналитическое выражение. Пусть на плоскости с прямоугольной системой координат u и υ задан квадрат, координаты внутренних точек которого удовлетворяют неравенствам 0 < u < 1, 0 < υ < 1. Гомеоморфный образ квадрата в пространстве с прямоугольной системой координат х, у, z задаётся при помощи формул х = φ(u, υ), у = Ψ(u, υ), z = χ(u, υ) (параметрические уравнения П.). При этом от функций φ(u, υ), Ψ(u, υ) и χ(u, υ) требуется, чтобы они были непрерывными и чтобы для различных точек (u, υ) и (u’, υ) были различными соответствующие точки (x, у, z) и (x’, у’, z'). Примером простой П. является полусфера. Вся же сфера не является простой П. Это вызывает необходимость дальнейшего обобщения понятия П. Поверхность, окрестность каждой точки которой есть простая П., называется правильной. С точки зрения топологического строения, П. как двумерные многообразия разделяются на несколько типов: замкнутые и открытые, ориентируемые и неориентируемые и т.д. (см. Многообразие).
         В дифференциальной геометрии исследуемые П. обычно подчинены условиям, связанным с возможностью применения методов дифференциального исчисления. Как правило, это — условия гладкости П., т. е. существования в каждой точке П. определённой касательной плоскости, кривизны и т.д. Эти требования сводятся к тому, что функции φ(u, υ), Ψ(u, υ), χ(u, υ) предполагаются однократно, дважды, трижды, а в некоторых вопросах — неограниченное число раз дифференцируемыми или даже аналитическими функциями. Кроме того, требуется, чтобы в каждой точке хотя бы один из определителей
        
        был отличен от нуля (см. Поверхностей теория).
         В аналитической геометрии и в алгебраической геометрии П. определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений:
         Ф (х, у, z) = 0. (*)
         Таким образом, определённая П. может и не иметь наглядного геометрического образа. В этом случае для сохранения общности говорят о мнимых П. Например, уравнение
         х2 + у2 + z2 + 1 = 0
        определяет мнимую сферу, хотя в действительном пространстве нет ни одной точки, координаты которой удовлетворяют такому уравнению (см. также Поверхности второго порядка). Если функция Ф (х, у, z) непрерывна в некоторой точке и имеет в ней непрерывные частные производные

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Синонимы:

Смотреть что такое "Поверхность" в других словарях:

  • ПОВЕРХНОСТЬ — ПОВЕРХНОСТЬ, поверхности, жен. Наружная, особенно верхняя сторона предмета. Поверхность земли. Поверхность воды. Гладкая, зеркальная поверхность. || Граница, отделяющая геометрическое тело от внешнего пространства или от другого тела; след… …   Толковый словарь Ушакова

  • ПОВЕРХНОСТЬ — ПОВЕРХНОСТЬ, поверхности, жен. Наружная, особенно верхняя сторона предмета. Поверхность земли. Поверхность воды. Гладкая, зеркальная поверхность. || Граница, отделяющая геометрическое тело от внешнего пространства или от другого тела; след… …   Толковый словарь Ушакова

  • поверхность — См …   Словарь синонимов

  • ПОВЕРХНОСТЬ — ПОВЕРХНОСТЬ, математическое понятие, возникшее как абстракция понятия деформированного куска плоскости. Поверхность обычно бывает границей двух смежных областей пространства. Поверхности могут быть гладкими (сфера, цилиндр), многогранными, с… …   Современная энциклопедия

  • поверхность —     ПОВЕРХНОСТЬ, гладь, зеркало …   Словарь-тезаурус синонимов русской речи

  • Поверхность — ПОВЕРХНОСТЬ, математическое понятие, возникшее как абстракция понятия деформированного куска плоскости. Поверхность обычно бывает границей двух смежных областей пространства. Поверхности могут быть гладкими (сфера, цилиндр), многогранными, с… …   Иллюстрированный энциклопедический словарь

  • ПОВЕРХНОСТЬ — общая часть двух смежных областей пространства. В аналитической геометрии в пространстве поверхности выражаются уравнениями, связывающими координаты их точек, напр. Ax + By + Cz + D = 0 уравнение плоскости, x2 + y2 + z2 = R2 уравнение сферы …   Большой Энциклопедический словарь

  • ПОВЕРХНОСТЬ — ПОВЕРХНОСТЬ, и, жен. 1. В математике: общая часть геометрических тел. 2. Наружная сторона чего н. П. озера. Скользить по поверхности чего н. (также перен.: не вникать глубоко в суть, ограничиваясь лишь приблизительным, внешним знакомством).… …   Толковый словарь Ожегова

  • ПОВЕРХНОСТЬ — граница разделамежду двумя контактирующими средами. В разл. ситуациях употребляются такжетермины: свободная, или атом но чистая, П. (П. твёрдого тела в вакууме …   Физическая энциклопедия

  • Поверхность — (Surface, Oberflache). Всякую непрерывную кривую линиюможно представить, как след движущейся точки. подобно этому и всякую П.можно образовать или описать движением в пространстве некоторой кривойлинии неизменяемого или изменяемого вида и размеров …   Энциклопедия Брокгауза и Ефрона

  • Поверхность — уровня. Если равнодействующая сил, приложенных кматериальной точке, имеет П. функцию V, то все пространство, в которомможет находиться точка, можно представить себе заполненным системоюбесконечного множества поверхностей, на каждой из которых V… …   Энциклопедия Брокгауза и Ефрона

Книги

Другие книги по запросу «Поверхность» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»