Перекисные соединения это:

Перекисные соединения
        класс химических соединений, содержащих непосредственно связанные между собой атомы кислорода.
         Перекисные соединения неорганические. Простейший, наиболее важный и распространённый представитель этой группы — Перекись водорода H2O2. Кристаллические решётки неорганических П. с. состоят из ионов металлов и из молекулярных анионов кислорода O22-, O2- и O3-. Соответственно по наличию этих групп различают перекиси, надперекиси и озониды. Все они являются различной силы окислителями, а при слабых термических или химических воздействиях разлагаются с выделением кислорода. Наиболее просто — сжиганием на воздухе или в кислороде — получают перекиси и надперекиси щелочных металлов: Na2O2, K2O2 (перекиси), KO2, RbO2, CsO2 (надперекиси). Перекиси и надперекиси металлов — соли слабых кислот, соответственно перекиси водорода H2O2 и пергидроксила HO2. Сам пергидроксил — активная частица и при обычных температурах быстро превращается в H2O2 и O2.
         Пергидроксил — промежуточная частица большинства химических процессов горения и окисления кислородом и перекисью водорода. Действием Озона (O3) на гидроокиси или надперекиси получают озониды щелочных металлов MO3 (например, KO3). Термическая нестойкость, окислительная активность, количество способного выделиться кислорода растут в ряду перекиси — надперекиси — озониды. Гидролиз этих П. с. происходит с образованием различных по силе окислителей (насыщенных соединений, как H2O2, или частиц, как OH):
         M2O2 + 2H2O = 2MOH + H2O2,
         M2O2 + H2O = MOH + HO2,
         MO3 + H2O = MOH + HO + O2.
         К этим группам соединений примыкают пероксигидраты — соединения, содержащие вместо кристаллизационной воды кристаллизационную H2O2, например K2CO3.3H2O2, в том числе и пероксигидраты перекисей, например CaO2.2H2O2.
         Пероксогруппа — O — O — входит в состав пероксо- или надкислот и двуядерных комплексных соединений. Примером служат пероксосерные кислоты — пероксомоно- и пероксодисерная,
         HOSO2 — ООН
        и
         HOSO2 — O — O — SO2OH.
         Аналогичные пероксопроизводные известны для угольной и некоторых других кислот. Эти соединения получают либо путём электролиза обычных кислот, либо при взаимодействии концентрированных кислот и H2O2. Двуядерные комплексы, содержащие пероксогруппу, известны для ряда металлов, а наиболее изучены для комплексов кобальта; многие из них могут быть получены при взаимодействии кислорода с солями кобальта (в растворе или в кристаллическом состоянии). Большинство пероксосоединений водой гидролизуется с образованием H2O2.
         П. с. нашли применение в технике как окислители (пероксодисерная кислота, Перекись натрия), отбеливатели (пероксобораты, например NaBO3; пероксокар-бонаты, например Na2CO3), как удобные источники кислорода для регенерации воздуха — эквивалентного превращения CO2 в O2 (надперекиси NaO2, KO2). Некоторые комплексные пероксосоли обратимо присоединяют, а при нагревании или изменении кислотности раствора выделяют кислород. На этом основано их применение как «кислородных батарей», как переносчиков кислорода, для разделения азотно-кислородных смесей. Различие в строении неорганических П. с. обусловливает различие их физических свойств и реакционной способности и возможность применения в разнообразных условиях.
         А. П. Пурмаль.
         Перекисные соединения органические содержат группировку — О — О —, связанную с одним или двумя атомами углерода. Основные типы органических П. с.: 1) перекиси алкилов и арилов R — O — O — R (здесь и далее R — алкил или арил); 2) перекиси ацилов RCO—O—O—COR; 3) гидроперекиси R — O O — Н; 4) перкислоты (надкислоты) RCO — O — O — H. К ним примыкают соединения, в которых перекисная группировка связана с гетероатомом, например R3Si — O — O — Li, R2B — O OR, и озониды, содержащие группировки — О — О — О —, например CF3 — O — O — O — CF3.
         П. с. получают главным образом окислением различных органических соединений (например, насыщенных углеводородов, олефинов, спиртов, альдегидов, кетонов, металлоорганических соединений) кислородом (часто — фотохимически) или перекисью водорода, например:
         Перекиси ацилов и надкислоты получаются взаимодействием карбоновых кислот или их производных с перекисью водорода в присутствии оснований:
         Перекиси ацилов и надкислоты получаются взаимодействием карбоновых кислот или их производных с перекисью водорода в присутствии оснований:
        
         Перекись диметила CH3OOCH3 — газ, tкип13 °С; перекись ди-трет-бутила — tкип 70 °С (при 197 мм рт. ст.); перекись ацетила (CH3COO)2tпл 27 °С, tкип 63 °С (при 21 мм рт. ст.), перекись бензоила (C6H5COO)2tпл 106—108 °С; надбензойная кислота C6H5CO — O — O — H — tпл 41—43 °C. Известны полимерные П. с. типа
        .
         При нагревании или облучении ультрафиолетовым светом органических П. с. происходит разрыв кислород-кислородной связи с образованием свободных радикалов типа RO․ или RCO — O․, дальнейшая судьба которых (а следовательно, и общее направление реакции) зависит от характера R. Алкоксильные или ацилоксильные радикалы чаще всего распадаются дальше, давая свободные углеводородные радикалы, например:
         Образующиеся свободные радикалы могут вызвать цепной распад П. с., поэтому многие из них, особенно низшие, взрывчаты. Это необходимо учитывать при работе с олефинами, диенами и простыми эфирами, легко образующими П. с. при действии кислорода воздуха. Стабильность П. с. возрастает с увеличением электроотрицательности заместителей, связанных с перекисной группой, а также при переходе от первичных радикалов к вторичным и третичным.
        Образующиеся свободные радикалы могут вызвать цепной распад П. с., поэтому многие из них, особенно низшие, взрывчаты. Это необходимо учитывать при работе с олефинами, диенами и простыми эфирами, легко образующими П. с. при действии кислорода воздуха. Стабильность П. с. возрастает с увеличением электроотрицательности заместителей, связанных с перекисной группой, а также при переходе от первичных радикалов к вторичным и третичным.
         Органические П. с. (перекиси бензоила, ацетила, ди-трет-бутила) широко используют для инициирования свободнорадикальной полимеризации (См. Полимеризация), вулканизации (См. Вулканизация) каучуков, а также таких реакций, как окисление, галогенирование, присоединение по двойным связям, теломеризация и др. П. с., особенно надкислоты, применяются в органическом синтезе как окислители, например для получения окисей олефинов (Прилежаева реакция), в текстильной промышленности — как отбеливающие вещества. П. с.— промежуточные продукты многих промышленно важных реакций, например синтеза Фенола и Ацетона окислением Кумола; они играют большую роль в процессах горения и окислительных биохимических процессах.
         Б. Л. Дяткин.
        
         Лит.: Вольнов И. И., Перекиси, надперекиси и озониды щелочных и щелочною земельных металлов, М., 1964; его же, Современные воззрения на природу неорганических перекисных соединений, «Успехи химии», 1972, т. 41, в. 4; Карножицкий В., Органические перекиси, пер. с франц., М., 1961.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Перекисные соединения" в других словарях:

  • СОЕДИНЕНИЯ АЗОТА И ФОСФОРА — Азот и фосфор как биогенные элементы постоянно присутствуют в водоемах в виде различных соединений, образующихся при разложении органического вещества. Дополнительно они поступают с бытовыми, индустриальными и сельскохозяйственными стоками, а… …   Болезни рыб: Справочник

  • ПЕРОКСИДНЫЕ СОЕДИНЕНИЯ — перекисные соединения. хим. соединения, в молекуле к рых присутствует группа О О . Неорганич. П. с. могут содержать анион О3 2 (пероксиды, например BaO2), O 2 (супероксиды, или надпероксиды, например NaO2), О 3 (озониды, например NaO3), НО 2… …   Большой энциклопедический политехнический словарь

  • ПЕРОКСИДНЫЕ СОЕДИНЕНИЯ ОРГАНИЧЕСКИЕ — содержат группировку из связанных между собой двух атомов О. Различают собственно пероксиды ROOR (R и R орг. радикалы), гидропероксиды ROOH и озониды, напр. соед. ф лы I. В пероксидных соед. (II.) один или оба радикала м. б. присоединены к группе …   Химическая энциклопедия

  • Пероксиды — Перекисные соединения  сложные вещества, в которых атомы кислорода соединены друг с другом. Пероксиды легко выделяют кислород. Для неорганических веществ рекомендуется использовать термин пероксид, для органических веществ и сегодня в… …   Википедия

  • Пероксиды —         соединения, в которых атомы кислорода связаны и друг с другом и с атомами более электроположительного элемента. Примеры: пероксид водорода Н О О Н, пероксид бария . Термин «П.» введен международной номенклатурой химической (См.… …   Большая советская энциклопедия

  • ПЕРОКСИДЫ — соединения, содержащие группировку О О , т.е. производные пероксида водорода Н2О2. Пероксиды металлов образуются при окислении некоторых активных металлов на воздухе, например, при сжигании натрия во влажном воздухе получается Na2O2. Пероксид… …   Энциклопедия Кольера

  • Номенклатура химическая —         система рациональных названий химически индивидуальных веществ. Первая такая система была выработана в 1787 Комиссией французских химиков под председательством А. Л. Лавуазье. До этого названия веществ давались произвольно: по случайным… …   Большая советская энциклопедия

  • Вольфрам — У этого термина существуют и другие значения, см. Вольфрам (значения). 74 Тантал ← Вольфрам → Рений …   Википедия

  • Простые эфиры — Простые эфиры  органические вещества, имеющие формулу R O R1, где R и R1  углеводородные радикалы. Следует однако учитывать, что такая группа может входить в состав других функциональных групп соединений, не являющихся простыми эфирами… …   Википедия

  • КАТАЛИЗ — КАТАЛИЗ, катализаторы. Катал и з ат о р название, введенное в науку Бер целиусом (Berzelius; 1835) для обозначения веществ, к рые вызывают или ускоряют хим. процессы, не принимая в них видимого участия.Позднее Оствальд(СЫ а1с1)и его школа… …   Большая медицинская энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»