Несмещённая оценка это:

Несмещённая оценка
        оценка параметра Распределения вероятностей по наблюдённым значениям, лишённая систематической ошибки. Более точно: если оцениваемое распределение зависит от параметров θ1, θ2,..., θs, то функция θi* (x1, x2,..., xn) от результатов наблюдения x1, x2,..., xn называемых Н. о. для параметра θi, если при любых допустимых значениях параметров θ1, θ2,..., θs математическое ожидание Е θi* (x1, x2,..., xn) = θi,. Например, если. x1, x2,..., xn суть результаты n независимых наблюдений случайной величины, имеющей Нормальное распределение
        
        с неизвестными а (математическое ожидание) и σ2 (дисперсия), то среднее арифметическое
        
        будет Н. о. для а. Часто используемая для оценки эмпирической дисперсии
        
        не является несмещенной оценкой. Н. о. для σ2 служит
         величина Н. о. квадратичного отклонения σ имеет более сложное выражение
        величина Н. о. квадратичного отклонения σ имеет более сложное выражение
         Оценка (1) для математического ожидания и оценка (2) для дисперсии являются Н. о. и при распределениях, отличных от нормального; оценка (3) для квадратичного отклонения, вообще говоря (при распределениях, отличных от нормального), может быть смещенной.
         Оценка (1) для математического ожидания и оценка (2) для дисперсии являются Н. о. и при распределениях, отличных от нормального; оценка (3) для квадратичного отклонения, вообще говоря (при распределениях, отличных от нормального), может быть смещенной.
         Использование Н. о. необходимо при оценке неизвестного параметра по большому числу серий наблюдений, каждая из которых состоит из небольшого числа наблюдений. Пусть, например, имеется k серий
         xi1, xi2,․․․, xin (i = 1, 2, ․․․, k)
        по n наблюдений в каждой и пусть siнесмещенная оценка s2 для σ2, составленная по i-й серии наблюдений. Тогда при большом k в силу закона больших чисел
        
        даже когда n невелико. Н. о. играют важную роль в статистическом контроле массовой продукции.
         Лит.: Крамер Г., Математические методы статистики, пер. с англ., М., 1948; Колмогоров А. Н., Несмещенные оценки, «Изв. А. Н. СССР. Серия математическая», 1950, № 4: Гнеденко Б. В., Беляев Ю. К.. Соловьев А. Д., Математические методы в теории надежности, М., 1965.
         Ю. В. Прохоров.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Несмещённая оценка" в других словарях:

  • Несмещённая оценка — в математической статистике это точечная оценка, математическое ожидание которой равно оцениваемому параметру. Определение Пусть выборка из распределения, зависящего от параметра . Тогда оценка называется несмещённой, если …   Википедия

  • Состоятельная оценка —         статистическая оценка параметра Распределения вероятностей, обладающая тем свойством, что при увеличении числа наблюдений вероятность отклонений оценки от оцениваемого параметра на величину, превосходящую некоторое заданное число,… …   Большая советская энциклопедия

  • Несмещенная оценка — Несмещённая оценка в математической статистике это точечная оценка, математическое ожидание которой равно оцениваемому параметру. Определение Пусть выборка из распределения, зависящего от параметра . Тогда оценка называется несмещённой, е …   Википедия

  • СТАТИСТИЧЕСКОЕ ОЦЕНИВАНИЕ — один из осн. разделов матем. статистики …   Физическая энциклопедия

  • Метод наименьших квадратов — Пример кривой, проведённой через точки, имеющие нормально распределённое отклонение от истинного значения. Запрос «МНК» перенаправляетс …   Википедия

  • Статистические оценки —         функции от результатов наблюдений, употребляемые для статистического оценивания (См. Статистическое оценивание) неизвестных параметров распределения вероятностей изучаемых случайных величин. Например, если X1,..., Xn независимые случайные …   Большая советская энциклопедия

  • Неравенство Крамера — Рао — В математической статистике неравенством Крамера Рао (в честь Гаральда Крамера и К. Р. Рао) называется неравенство, которое при некоторых условиях на статистическую модель даёт нижнюю границу для дисперсии оценки неизвестного параметра, выражая… …   Википедия

  • Неравенство Крамера — В математической статистике неравенством Крамера Рао (в честь Гаральда Крамера и К. Р. Рао) называется неравенство, которое при некоторых условиях на статистическую модель даёт нижнюю границу для дисперсии оценки неизвестного параметра, выражая… …   Википедия

  • Выборочное среднее — Выборочное (эмпирическое) среднее  это приближение теоретического среднего распределения, основанное на выборке из него. Определение Пусть   выборка из распределения вероятности, определённая на некотором вероятностном пространстве .… …   Википедия

  • Статистика (функция выборки) — У этого термина существуют и другие значения, см. Статистика (значения). Статистика (в узком смысле)  это измеримая числовая функция от выборки, не зависящая от неизвестных параметров распределения. В широком смысле термин (математическая)… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»