Механика грунтов это:

Механика грунтов
        научная дисциплина, изучающая напряженно-деформированное состояние Грунтов, условия их прочности, давление на ограждения, устойчивость грунтовых массивов и др. В М. г. рассматривается зависимость механических свойств грунтов от их строения и физического состояния, исследуются общая сжимаемость грунтов, их структурно-фазовая деформируемость, контактная сопротивляемость сдвигу. Результаты, полученные в М. г., используются при проектировании оснований и фундаментов зданий, промышленных и гидротехнических сооружений, в дорожном и аэродромном строительстве, устройстве подземных коммуникаций, прокладке трубопроводов, а также для прогнозирования деформаций и устойчивости откосов, подпорных стен и др. Методы М. г. применяются при рассмотрении задач об использовании взрывов и вибраций в производственных процессах, связанных с разработкой грунтов.
         Основной вид деформации грунтов — уплотнение их при сжатии. Оно вызывается действием нормальных усилий, приложенных к элементу грунта, и происходит главным образом за счёт взаимного перемещения (сдвигов и поворотов) твёрдых минеральных частиц, вызывающего уменьшение пористости грунта. Характеристиками деформируемости грунтов служат коэффициент относительной сжимаемости или обратно пропорциональный ему модуль общей деформации и коэффициент относительной поперечной деформации, аналогичные модулю упругости и коэффициент Пуассона (см. Пуассона коэффициент) упругих тел, с той разницей, что нагружение грунта предполагается однократным (без последующей разгрузки) и грунт далёк от разрушения. Для грунтов характерна деформируемость их во времени как вследствие выжимания воды из пор грунта и вызываемого этим перераспределения давлений между поровой водой и грунтовым скелетом (процесс фильтрационной консолидации), так и в результате вязкого взаимного перемещения грунтовых частиц (процесс ползучести грунта).
         Основной вид нарушения прочности грунта — смещение одной его части по отношению к другой вследствие незатухающего сдвига, переходящего в срез. Сопротивление срезу несвязных (сыпучих) грунтов обусловливается силами внутреннего трения, развивающегося в точках контакта частиц грунта при взаимном их смещении. В глинистых грунтах взаимному смещению препятствуют цементационные и водно-коллоидные связи, обусловливающие сопротивление срезу. Показатели прочности грунта — угол внутреннего трения и удельное сцепление (зависящие от физического состояния грунта) — являются лишь параметрами диаграммы среза, необходимыми в М. г. для расчёта прочности. Для глинистых грунтов величина сил внутреннего трения зависит от той доли внешней нагрузки, которая воспринимается их минеральным скелетом. Если часть нагрузки передаётся на поровую воду, то в грунте проявляется уменьшенное сопротивление срезу за счёт трения. В М. г. скорость движения воды в порах грунта описывается законом Дарси, скорость деформирования вязкопластичных межчастичных связей — интегральным уравнением теории наследственной ползучести Больцмана — Вольтерры, ядро которой устанавливается по результатам экспериментов. При вибрациях механические свойства грунтов (особенно несвязных) меняются в зависимости от интенсивности колебаний. Малосвязные грунты под действием вибраций в определённых условиях приобретают свойства вязких жидкостей.
         В М. г. при построении прогнозов пользуются данными инженерной геологии (См. Инженерная геология), инженерной гидрогеологии (См. Инженерная гидрогеология), а также исходными зависимостями механики сплошной среды (См. Механика сплошной среды) и, в частности, — теорий упругости, пластичности, ползучести, статики сыпучей среды.
         Задачи исследования напряжений и деформаций грунтовых массивов под действием внешних сил и собственного веса, разработка вопросов их прочности, устойчивости, давления грунтов на ограждения, а также на неглубоко расположенные подземные сооружения являются важнейшими в М. г.; решение их для различных случаев загружения имеет непосредственное приложение в практике строительства.
         При рассмотрении поставленных проблем в М. г. в основном применяются 2 метода: расчётно-теоретический, основывающийся на математическом решении четко сформулированных задач М. г. с обязательным опытным (лабораторным или полевым) определением значений исходных параметров, и метод моделирования, используемый в тех случаях, когда сложность задачи не позволяет получить «замкнутого» решения или когда результат получается весьма громоздким. Первый метод интенсивно развивается благодаря применению ЭВМ. Второй метод (впервые предложенный в СССР Г. И. Покровским и Н. Н. Давиденковым) получает развитие в М. г. в двух направлениях: физического моделирования для задач, в которых не учитываются массовые силы, и центробежного моделирования, отвечающего требованиям теории подобия (см. Подобия теория) с учётом массовых сил.
         Использование решений, основанных на уравнениях сплошной линейно-деформируемой среды и применяемых к грунтам лишь при определённых условиях, позволяет рассматривать многие задачи М. г., где напряжённое состояние не является предельным. В ряде случаев по теории линейно-деформируемой среды устанавливается лишь напряжённое состояние, а переход к деформациям осуществляется при помощи экспериментально определяемых зависимостей.
         При рассмотрении задач о деформировании грунтов во времени (по теории фильтрационной консолидации или ползучести) применяется распределение напряжений, полученное на основе решения задачи для сплошной линейно-деформируемой среды.
         Теория предельного равновесия сыпучих сред используется в М. г. для рассмотрения задач, связанных с определением критических нагрузок на основания, предельного равновесия грунтового откоса заданного профиля, очертания максимально устойчивых откосов без пригрузки или с заданной пригрузкой сверху, активного и пассивного давлений грунтов на наклонные подпорные стенки, устойчивости грунтовых сводов и др.
         Некоторые виды грунтов, являясь структурно неустойчивыми (оттаивающие вечномёрзлые, лёссовые просадочные при замачивании, слабые структурные), обладают особенностями деформирования, связанными с резкими изменениями их физического состояния и структуры. В современных М. г. разработаны специальные методы расчёта осадок вечномёрзлых грунтов при их оттаивании, просадок лёссов при замачивании, устанавливаются предельные скорости загружения слабых глинистых и заторфованных грунтов из условия сохранения их структурной прочности и т. д. На основе научных достижений в области М. г. в СССР создан наиболее прогрессивный метод проектирования оснований и фундаментов по предельным деформациям. Важной задачей современной М. г. является дальнейшее совершенствование методов определения физико-механических свойств грунтов в лабораторных и полевых условиях, комплексного исследования совместной работы фундаментов сооружений и грунтов оснований, расчёта свайных фундаментов.
         Первой фундаментальной работой по М. г. является исследование французского учёного Ш. Кулона (1773) по теории сыпучих тел, ряд результатов которого успешно применяется и в настоящее время при расчёте давления грунтов на подпорные стенки. Французским учёным Ж. Буссинеском было получено решение задачи (1885) о распределении напряжений в упругом полупространстве под сосредоточенной силой, послужившее основой для определения напряжений в линейно-деформируемых основаниях. Важным этапом в развитии М. г. явились исследования американского учёного К. Терцаги. Большой вклад в М. г. сделан русскими (В. И. Курдюмов, П. А. Миняев) и особенно советскими учёными. Последними разработана новейшая теория предельного равновесия грунтов (В. В. Соколовский, В. Г. Березанцев, С. С. Голушкевич, М. В. Малышев и др.), сформулированы и решены задачи теории консолидации двух- и трёхфазных грунтов (Н. М. Герсеванов и Д. Е. Польшин, В. А. Флорин, Н. А. Цытович, Н. Н. Маслов, Ю. К. Зарецкий и др.)., на базе теории балок на упругом основании исследованы вопросы совместной работы сооружений и их оснований (А. Н. Крылов, М. И. Горбунов-Посадов, В. А. Флорин, Б. Н. Жемочкин, А. П. Синицын, И. А. Симвулиди и др.). Важная роль принадлежит советским учёным в разработке ряда вопросов механики отдельных региональных видов грунтов — структурно-неустойчивых просадочных (Ю. М. Абелев, Н. Я. Денисов, Р. А. Токарь), многолетнемёрзлых (Н. А. Цытович, С. С. Вялов, М. Н. Гольдштейн и др.). Среди исследований по вопросам устойчивости откосов наиболее известны работы В. В. Соколовского, Н. Н. Маслова, М. Н. Гольдштейна, подпорных стенок — И. П. Прокофьева, Г. К. Клейна. Из зарубежных учёных в области М. г. наиболее известны своими работами: Ж. Керизель (Франция), И. Бринч-Хансен (Дания), Р. Гибсон, А. Бишоп (Великобритания), М. Био, У. Лэмб (США).
         Научно-исследовательские работы по М. г. ведутся в ряде научных учреждений и вузов СССР, преимущественно в Научно-исследовательском институте оснований и подземных сооружений им. Н. М. Герсеванова, Московском инженерно-строительном институте им. В. В. Куйбышева и др. строительных вузах.
         В 1936 по инициативе К. Терцаги было создано Международное общество по механике грунтов и фундаментостроению (ISSMFE), членом которого (с 1957) является СССР. 8-й конгресс этого общества состоялся в Москве в 1973. Орган общества — журнал «Géotechnique» (L., c 1948). В СССР с 1959 издаётся журнал «Основания, фундаменты и механика грунтов». Периодические издания выпускаются также в США, Франции, Италии и др. странах.
        
         Лит.: Прокофьев И. П., Давление сыпучего тела и расчёт подпорных стенок, 5 изд., М., 1947; Герсеванов Н. М., Польшин Д. Е., Теоретические основы механики грунтов и их практические применения, М., 1948; Флорин В. А., Основы механики грунтов, т. 1—2, Л. — М., 1959—1961; Соколовский В. В., Статика сыпучей среды, 3 изд., М., 1960; Терцаги К., Теория механики грунтов, пер. с нем., М., 1961; Цытович Н. А., Механика грунтов, 4 изд., М., 1963; его же, Механика грунтов. Краткий курс, 2 изд., М., 1973; Клейн Г. К., Расчёт подпорных стен, М., 1964; Гольдштейн М. Н., Механические свойства грунтов, 2 изд., [т. 1—2], М., 1971—73.
         Н. А. Цытович, М. В. Малышев.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Механика грунтов" в других словарях:

  • Механика грунтов — строительная дисциплина, изучающая грунты основания и их взаимодействие с сооружениями. Механика грунтов, вместе с инженерной геологией и охраной природной среды составляет особый цикл строительных дисциплин, работающих с материалами природного… …   Википедия

  • Механика грунтов — научная дисциплина, изучающая напряжения, деформации, условия прочности и устойчивости грунтов, изменение их состояния и свойств под влиянием внешних механических воздействий. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н.… …   Геологическая энциклопедия

  • МЕХАНИКА ГРУНТОВ — раздел механики сыпучих сред, охватывающий изучение напряженно деформированного состояния, условий прочности и устойчивости, изменения свойств грунтов под влиянием внешних, главным образом механических, воздействий …   Большой Энциклопедический словарь

  • механика грунтов — Наука, изучающая свойства грунтов и их поведение под нагрузкой [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] EN soil mechanics DE Bodenmechanik FR mécanique des sols …   Справочник технического переводчика

  • механика грунтов — раздел механики сыпучих сред, охватывающий изучение напряжённо деформированные состояния, условий прочности и устойчивости, изменения свойств грунтов под влиянием внешних, главным образом механических, воздействий. * * * МЕХАНИКА ГРУНТОВ МЕХАНИКА …   Энциклопедический словарь

  • МЕХАНИКА ГРУНТОВ — наука, изучающая свойства грунтов и их поведение под нагрузкой (Болгарский язык; Български) земна механика (Чешский язык; Čeština) mechanika zemin (Немецкий язык; Deutsch) Bodenmechanik (Венгерский язык; Magyar) talajmechanika (Монгольский язык)… …   Строительный словарь

  • МЕХАНИКА ГРУНТОВ — науч. дисциплина, изучающая напряжённо деформиров. состояние грунтов, условия их прочности и устойчивости, изменения св в грунтов под влиянием внеш., гл. обр. механич., воздействий …   Большой энциклопедический политехнический словарь

  • МЕХАНИКА ГРУНТОВ — научная дисциплина, изучающая напряженно деформированное состояние грунтов, условия их прочности, давления на ограждения и др. Выводы механики грунтов используют при изучении процессов уплотнения литейных форм и стержневых смесей …   Металлургический словарь

  • МЕХАНИКА ГРУНТОВ — раздел механики сыпучих сред, охватывающий изучение напряжённо деформир. состояния, условий прочности и устойчивости, изменения свойств грунтов под влиянием внешних, гл. обр. механич., воздействий …   Естествознание. Энциклопедический словарь

  • МЕХАНИКА ГРУНТОВ — научная дисциплина, изучающая напряжения, деформации, условия прочности и устойчивости грунтов, изменения их состояния и свойств под влиянием внешних, главным образом механических, воздействий. Используются решения теорий упругости и пластичности …   Словарь по гидрогеологии и инженерной геологии

Книги

Другие книги по запросу «Механика грунтов» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»