Масса (физ. величина) это:

Масса (физ. величина)
Масса, физическая величина, одна из основных характеристик материи, определяющая её инерционные и гравитационные свойства. Соответственно различают М. инертную и М. гравитационную (тяжёлую, тяготеющую).

Понятие М. было введено в механику И. Ньютоном. В классической механике Ньютона М. входит в определение импульса (количества движения) тела: импульс p пропорционален скорости движения тела v,

p = mv .

(1)

Коэффициент пропорциональности ‒ постоянная для данного тела величина m ‒ и есть М. тела. Эквивалентное определение М. получается из уравнения движения классической механики

f = ma .

(2)

Здесь М. ‒ коэффициент пропорциональности между действующей на тело силой f и вызываемым ею ускорением тела a. Определённая соотношениями (1) и (2) М. называется инерциальной массой, или инертной массой; она характеризует динамические свойства тела, является мерой инерции тела: при постоянной силе чем больше М. тела, тем меньшее ускорение оно приобретает, то есть тем медленнее меняется состояние его движения (тем больше его инерция).

Действуя на различные тела одной и той же силой и измеряя их ускорения, можно определить отношения М. этих тел: m1 : m2 : m3 ... = a1 : a2 : a3 ...; если одну из М. принять за единицу измерения, можно найти М. остальных тел.

В теории гравитации Ньютона М. выступает в другой форме ‒ как источник поля тяготения. Каждое тело создаёт поле тяготения, пропорциональное М. тела (и испытывает воздействие поля тяготения, создаваемого другими телами, сила которого также пропорциональна М. тел). Это поле вызывает притяжение любого другого тела к данному телу с силой, определяемой Ньютона законом тяготения:

,

(3)

где r ‒ расстояние между телами, G ‒ универсальная гравитационная постоянная, a m1 и m2 ‒ М. притягивающихся тел. Из формулы (3) легко получить формулу для веса Р тела массы m в поле тяготения Земли:

Р = m · g .

(4)

Здесь g = G · M / r2 ‒ ускорение свободного падения в гравитационном поле Земли, а r » R ‒ радиусу Земли. М., определяемая соотношениями (3) и (4), называется гравитационной массой тела.

В принципе ниоткуда не следует, что М., создающая поле тяготения, определяет и инерцию того же тела. Однако опыт показал, что инертная М. и гравитационная М. пропорциональны друг другу (а при обычном выборе единиц измерения численно равны). Этот фундаментальный закон природы называется принципом эквивалентности. Его открытие связано с именем Г. Галилея, установившего, что все тела на Земле падают с одинаковым ускорением. А. Эйнштейн положил этот принцип (им впервые сформулированный) в основу общей теории относительности (см. Тяготение). Экспериментально принцип эквивалентности установлен с очень большой точностью. Впервые (1890‒1906) прецизионная проверка равенства инертной и гравитационной М. была произведена Л. Этвешем, который нашёл, что М. совпадают с ошибкой ~ 10-8. В 1959‒64 американские физики Р. Дикке, Р. Кротков и П. Ролл уменьшили ошибку до 10-11, а в 1971 советские физики В. Б. Брагинский и В. И. Панов ‒ до 10-12.

Принцип эквивалентности позволяет наиболее естественно определять М. тела взвешиванием.

Первоначально М. рассматривалась (например, Ньютоном) как мера количества вещества. Такое определение имеет ясный смысл только для сравнения однородных тел, построенных из одного материала. Оно подчёркивает аддитивность М. ‒ М. тела равна сумме М. его частей. М. однородного тела пропорциональна его объёму, поэтому можно ввести понятие плотности ‒ М. единицы объёма тела.

В классической физике считалось, что М. тела не изменяется ни в каких процессах. Этому соответствовал закон сохранения М. (вещества), открытый М. В. Ломоносовым и А. Л. Лавуазье. В частности, этот закон утверждал, что в любой химической реакции сумма М. исходных компонентов равна сумме М. конечных компонентов.

Понятие М. приобрело более глубокий смысл в механике спец. теории относительности А. Эйнштейна (см. Относительности теория), рассматривающей движение тел (или частиц) с очень большими скоростями ‒ сравнимыми со скоростью света с » 3×1010 см/сек. В новой механике ‒ она называется релятивистской механикой ‒ связь между импульсом и скоростью частицы даётся соотношением:

(5)

При малых скоростях (v << с) это соотношение переходит в Ньютоново соотношение р = mv. Поэтому величину m0 называют массой покоя, а М. движущейся частицы m определяют как зависящий от скорости коэфф. пропорциональности между р и v:

(6)

Имея в виду, в частности, эту формулу, говорят, что М. частицы (тела) растет с увеличением её скорости. Такое релятивистское возрастание М. частицы по мере повышения её скорости необходимо учитывать при конструировании ускорителей заряженных частиц высоких энергий. М. покоя m0 (М. в системе отсчёта, связанной с частицей) является важнейшей внутренней характеристикой частицы. Все элементарные частицы обладают строго определёнными значениями m0, присущими данному сорту частиц.

Следует отметить, что в релятивистской механике определение М. из уравнения движения (2) не эквивалентно определению М. как коэффициент пропорциональности между импульсом и скоростью частицы, так как ускорение перестаёт быть параллельным вызвавшей его силе и М. получается зависящей от направления скорости частицы.

Согласно теории относительности, М. частицы m связана с её энергией Е соотношением:

(7)

М. покоя определяет внутреннюю энергию частицы ‒ так называемую энергию покоя Е0 = m0c2. Таким образом, с М. всегда связана энергия (и наоборот). Поэтому не существует по отдельности (как в классической физике) закона сохранения М. и закона сохранения энергии ‒ они слиты в единый закон сохранения полной (то есть включающей энергию покоя частиц) энергии. Приближённое разделение на закон сохранения энергии и закон сохранения М. возможно лишь в классической физике, когда скорости частиц малы (v << с) и не происходят процессы превращения частиц.

В релятивистской механике М. не является аддитивной характеристикой тела. Когда две частицы соединяются, образуя одно составное устойчивое состояние, то при этом выделяется избыток энергии (равный энергии связи) DЕ, который соответствует М. Dm = DЕ/с2. Поэтому М. составной частицы меньше суммы М. образующих его частиц на величину DЕ/с2 (так называемый дефект масс). Этот эффект проявляется особенно сильно в ядерных реакциях. Например, М. дейтрона (d) меньше суммы М. протона (p) и нейтрона (n); дефект М. Dm связан с энергией Еg гамма-кванта (g), рождающегося при образовании дейтрона: p + n ® d + g, Еg = Dm · c2. Дефект М., возникающий при образовании составной частицы, отражает органическую связь М. и энергии.

Единицей М. в СГС системе единиц служит грамм, а в Международной системе единиц СИкилограмм. М. атомов и молекул обычно измеряется в атомных единицах массы. М. элементарных частиц принято выражать либо в единицах М. электрона me, либо в энергетических единицах, указывая энергию покоя соответствующей частицы. Так, М. электрона составляет 0,511 Мэв, М. протона ‒ 1836,1 me, или 938,2 Мэв и т. д.

Природа М. ‒ одна из важнейших нерешенных задач современной физики. Принято считать, что М. элементарной частицы определяется полями, которые с ней связаны (электромагнитным, ядерным и другими). Однако количественная теория М. ещё не создана. Не существует также теории, объясняющей, почему М. элементарных частиц образуют дискретный спектр значений, и тем более позволяющей определить этот спектр.

В астрофизике М. тела, создающего гравитационное поле, определяет так называемый гравитационный радиус тела Rгр = 2GM/c2. Вследствие гравитационного притяжения никакое излучение, в том числе световое, не может выйти наружу, за поверхность тела с радиусом R £ Rгр. Звёзды таких размеров будут невидимы; поэтому их назвали «чёрными дырами». Такие небесные тела должны играть важную роль во Вселенной.


Лит.: Джеммер М., Понятие массы в классической и современной физике, перевод с английского, М., 1967; Хайкин С. Э., физические основы механики, М., 1963; Элементарный учебник физики, под редакцией Г. С. Ландсберга, 7 изд., т. 1, М., 1971.

Я. А. Смородинский.


Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Масса (физ. величина)" в других словарях:

  • МАССА — (лат. massa, букв. глыба, ком, кусок), физ. величина, одна из осн. хар к материи, определяющая её инерционные и гравитац. св ва. Понятие «М.» было введено в механику И. Ньютоном в определении импульса (кол ва движения) тела импульс р пропорц.… …   Физическая энциклопедия

  • МАССА — (лат. massa). 1) количество вещества в предмете, независимо от формы; тело, материя. 2) в общежитии: значительное количество чего либо. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. МАССА 1) в физике количество… …   Словарь иностранных слов русского языка

  • МАССА — – 1)в естественнонаучном смысле количество вещества, содержащегося в теле; сопротивление тела изменению своего движения (инерция) называют инертной массой; физической единицей массы является инертная масса 1 см3 воды, что составляет 1 г (грамм… …   Философская энциклопедия

  • МАССА — (в обыденном представлении), количество вещества, заключающееся в данном теле; точное же определение вытекает из основных законов механики. Согласно второму закону Ньютона «изменение движения пропорционально действующей силе и имеет… …   Большая медицинская энциклопедия

  • ИНЕРТНАЯ МАССА — физ. величина, характеризующая динамич. св ва тепа. И. м. входит во второй закон Ньютона (и, т. о., явл. мерой инерции тела). Равна гравитац. массе (см. МАССА). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А …   Физическая энциклопедия

  • ГРАВИТАЦИОННАЯ МАССА — (тяжёлая масса), физ. величина, характеризующая св ва тела как источника тяготения; равна инертной массе. (см. МАССА). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 …   Физическая энциклопедия

  • МОЛЯРНАЯ МАССА — физ. величина, равная отношению массы к кол ву в ва. Единица М. м. (в СИ) кг/моль. М = m/n, где М М. м. в кг/моль, m масса в ва в кг, п кол во в ва в молях. Числовое значение М. м., выраж. в кг/моль, равно относит. молекулярной массе, делённой на …   Большой энциклопедический политехнический словарь

  • ОСНОВНАЯ ВЕЛИЧИНА — физ. величина в нек рой системе величин, принятая за независимую и используемая для определения др. величин этой системы. Напр., в системе величин lmt имеются три осн. величины длина (обозначение l), масса (обозначение т) и время (обозначение t) …   Большой энциклопедический политехнический словарь

  • ПРОИЗВОДНАЯ ВЕЛИЧИНА — физическая физ. величина в нек рой системе величин, определяемая через другие, ранее введённые величины этой системы. Примеры образования производных величин (в системе величин lmt): скорость v постулат, движения определяется по модулю ф лой v =… …   Большой энциклопедический политехнический словарь

  • ФИЗИЧЕСКАЯ ВЕЛИЧИНА — величина, хар ка физ. объектов или явлений материального мира, общая для множества объектов или явлений в качеств. отношении, но индивидуальная в количеств. отношении для каждого из них. Напр., масса, длина, площадь, объём, сила электрич. тока Ф …   Большой энциклопедический политехнический словарь


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»