Марковский процесс это:

Марковский процесс
        важный специальный вид случайных процессов (См. Случайный процесс), имеющих большое значение в приложениях теории вероятностей к различным разделам естествознания и техники. Примером М. п. может служить распад радиоактивного вещества. Известно, что вероятность распада данного атома за малый промежуток времени dt равна αdt, где α — постоянная, характеризующая интенсивность распада данного радиоактивного вещества; эта вероятность не зависит от судьбы всех других атомов и от возраста данного атома. Пусть N обозначает число атомов радиоактивного вещества в некоторый начальный момент времени t = 0 и Pn(t) — вероятность того, что к моменту времени t распалось n атомов. Вероятности Pn(t) удовлетворяют системе дифференциальных уравнений
        
        
         Решая эту систему уравнений при начальных данных
         P0(0) = 1, Pn(0) = 0, 1 ≤ nN,
        получаем
        
        В этом примере в каждый момент времени имеется либо 0, либо 1, либо 2, ..., либо N распавшихся атомов, причём число их характеризует состояние изучаемого явления.
         Рассмотренный пример укладывается в следующую более общую схему. Пусть всевозможными состояниями изучаемой системы являются ω1, ω2, ..., ωn, ... в конечном или бесконечном числе. В каждый момент времени система может находиться в одном из этих состояний, и с течением времени происходят случайные переходы из одного состояния в другое. Процесс называют марковским, если состояние системы ωi в некоторый момент времени определяет лишь вероятность pij(t) того, что через промежуток времени t система будет находиться в состоянии ωj, причём эта вероятность не зависит от течения процесса в предшествующий период. Вероятности pij(t) называют переходными вероятностями. При очень широких условиях переходные вероятности М. п. удовлетворяют конечной или бесконечной системе линейных однородных обыкновенных дифференциальных уравнений.
         Теория М. п. возникла на основе исследований А. А. Маркова (старшего), который в работах 1907 положил начало изучению последовательностей зависимых испытаний и связанных с ними сумм случайных величин. Это направление исследований известно под названием теории цепей Маркова. В теории цепей Маркова рассматриваются такие системы, которые могут переходить из одного состояния в другое лишь во вполне определённые моменты времени ti, ti, ... , tk, ... Пусть pij обозначает вероятность того, что система в момент времени tk+1 находится в состоянии ωj, если известно, что в момент времени tk она находилась в состоянии ωi. Исследование цепей Маркова можно свести к изучению матриц (См. Матрица) переходных вероятностей Диффузия), в которых состояние системы характеризуется непрерывно изменяющейся координатой диффундирующей частицы.
         В этом случае вместо переходных вероятностей естественно рассматривать соответствующие плотности вероятностей f(t, х, у). Тогда f(t, х, у) есть вероятность того, что частица, находившаяся в точке х, через промежуток времени t будет иметь координату, заключённую между у и y+dy. Колмогоров показал (при некоторых общих условиях), что плотности f(t, х, у) удовлетворяют следующему дифференциальному уравнению с частными производными
        
        которое ранее было введено для важного в физике специального случая процесса диффузии немецкими физиками А. Фоккером и М. Планком. В этом уравнении коэффициент A(y) представляет собой среднюю скорость изменения координаты у, а коэффициент В(у) — интенсивность случайных колебаний около этой средней. Указанное уравнение явилось источником для многих исследований по теории М. п. в СССР и за рубежом.
         Лит.: Марков А. А., Избранные труды. Теория чисел. Теория вероятностей, М., 1951; Колмогоров А. Н., Об аналитических методах в теории вероятностей, «Успехи математических наук», 1938, в. 5; Феллер В., Введение в теорию вероятностей и её приложения, перевод с английского, т. 1 — 2, М., 1967; Гихман И. И., Скороход А. В., Введение в теорию случайных процессов, М., 1965.
         Б. А. Севастьянов, С. Х. Сираждинов.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Марковский процесс" в других словарях:

  • МАРКОВСКИЙ ПРОЦЕСС — процесс без последействия, случайный процесс, эволюция к рого после любого заданного значения временного параметра tне зависит от эволюции, предшествовавшей t, при условии, что значение процесса в этот момент фиксировано (короче: будущее н… …   Математическая энциклопедия

  • Марковский процесс — [Mar­kov process] дискретный или непрерывный случайный процесс X(t) , который можно полностью задать с помощью двух величин: вероятности P(x,t) того, что случайная величина x(t) в момент времени t равна x и вероятности P(x2, t2½x1t1)  того, что… …   Экономико-математический словарь

  • Марковский процесс — Дискретный или непрерывный случайный процесс X(t) , который можно полностью задать с помощью двух величин: вероятности P(x,t) того, что случайная величина x(t) в момент времени t равна x и вероятности P(x2, t2?x1t1) того, что если x при t = t1… …   Справочник технического переводчика

  • МАРКОВСКИЙ ПРОЦЕСС — важный специальный вид случайных процессов. Примером марковского процесса может служить распад радиоактивного вещества, где вероятность распада данного атома за малый промежуток времени не зависит от течения процесса в предшествующий период.… …   Большой Энциклопедический словарь

  • Марковский процесс — Марковский процесс  случайный процесс, эволюция которого после любого заданного значения временного параметра не зависит от эволюции, предшествовавшей , при условии, что значение процесса в этот момент фиксировано («будущее» процесса не… …   Википедия

  • Марковский процесс — 36. Марковский процесс Примечания: 1. Условную плотность вероятности называют плотностью вероятности перехода из состояния xn 1в момент времени tn 1 в состояние хпв момент времени tn. Через нее выражаются плотности вероятностей произвольного… …   Словарь-справочник терминов нормативно-технической документации

  • марковский процесс — Markovo procesas statusas T sritis automatika atitikmenys: angl. Markovprocess vok. Markovprozeß, m rus. марковский процесс, m; процесс Маркова, m pranc. processus markovien, m …   Automatikos terminų žodynas

  • марковский процесс — Markovo vyksmas statusas T sritis fizika atitikmenys: angl. Markov process; Markovian process vok. Markow Prozeß, m; Markowscher Prozeß, m rus. марковский процесс, m; процесс Маркова, m pranc. processus de Markoff, m; processus marcovien, m;… …   Fizikos terminų žodynas

  • Марковский процесс — важный специальный вид случайных процессов. Примером Марковского процесса может служить распад радиоактивного вещества, где вероятность распада данного атома за малый промежуток времени не зависит от течения процесса в предшествующий период.… …   Энциклопедический словарь

  • МАРКОВСКИЙ ПРОЦЕСС — выдающееся открытие в области математики, сделанное в 1906 русским ученым А.А. Марковым. Источник: Энциклопедия Русская цивилизация …   Русская история

Книги

Другие книги по запросу «Марковский процесс» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»