Лапласа преобразование это:

Лапласа преобразование
        преобразование, переводящее функцию f (t) действительного переменного t (0 < t < ∞), называемую «оригиналом», в функцию
        (1)
         (1)
         комплексного переменного р =σ +iτ. Под Л. п. понимают также не только само преобразование, но и его результат — функцию F (p). Интеграл в правой части формулы (1) называется интегралом Лапласа. Он был рассмотрен П. Лапласом в ряде работ, которые объединены в его книге «Аналитическая теория вероятностей», вышедшей в 1812. Значительно раньше (в 1737) такие интегралы применял к решению дифференциальных уравнений Л. Эйлер.
         При некоторых условиях, указанных ниже, Л. п. определяет функцию f (t) однозначно, в простейших случаях — по формуле обращения:
        
         Л. п. является линейным функциональным преобразованием. Из числа основных формул Л. п. можно отметить следующие:
        
         n = 1, 2, …,
         t >0.
         Л. п. в сочетании с формулой (2) его обращения применяется к интегрированию дифференциальных уравнений. В частности, в силу свойства (1) и линейности, Л. п. решения обыкновенного линейного дифференциального уравнения с постоянными коэффициентами удовлетворяет алгебраическому уравнению 1-й степени и может быть, следовательно, легко найдено. Так, если, например, у’’ + у = f (t), y (0) = y’ (0) = 0
         и Y (p) = L [y], F (p) = L [f],
         то L [y’’] = p2Y (p)
         и p2Y (p) + Y (p) = F (p),
         откуда
         Многочисленные задачи электротехники, гидродинамики, механики, теплопроводности эффективно решаются методами, использующими Л. п.
         Многочисленные задачи электротехники, гидродинамики, механики, теплопроводности эффективно решаются методами, использующими Л. п.
         Л. п. нашло особенно широкое применение в обосновании операционного исчисления (См. Операционное исчисление), в котором обычно вместо Л. п. F (p) вводится «изображение» оригинала f (t) — функция pF (p).
         Современная общая теория Л. п. строится на основе интегрирования в смысле Лебега (см. Интеграл). Для применимости Л. п. к функции f (t) необходимо, чтобы f (t) была интегрируема в смысле Лебега на любом конечном интервале (0, t), t > 0 и интеграл (1) для неё сходился хотя бы в одной точке p0 = σ0 + iτ0. Если интеграл (1) сходится в точке р0, то он сходится во всех точках р, для которых Re (р—р0) > 0. Т. о., если интеграл (1) сходится хотя бы в одной точке плоскости p0, то либо он сходится во всей плоскости, либо существует такое число σс, что при Re p > σc интеграл (1) сходится, а при Re р < σс расходится. Число σс называется абсциссой сходимости интеграла Лапласа. F (p) — аналитическая функция (См. Аналитические функции) в полуплоскости Re р > σс.
        
         Лит.: Диткин В. А. и Кузнецов П. И., Справочник по операционному исчислению. Основы теории и таблицы формул, М. — Л., 1951; Диткин В. А. и Прудников А. П., Интегральные преобразования и операционное исчисление, М., 1961; Дёч Г., Руководство к практическому применению преобразования Лапласа, пер. с нем., М., 1965.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Лапласа преобразование" в других словарях:

  • ЛАПЛАСА ПРЕОБРАЗОВАНИЕ — интегральное преобразование где интегрирование ведётся по контуру L в комплексной плоскости переменной z=x+iy, ставящее в соответствие ф ции f(z), определённой и интегрируемой на L, аналитич. ф цию F(k )комплексной переменной . Л. п. в более… …   Физическая энциклопедия

  • Лапласа преобразование — Преобразование Лапласа интегральное преобразование, связывающее функцию комплексного переменного (изображение) с функцией действительного переменного (оригинал). С его помощью исследуются свойства динамических систем и решаются дифференциальные и …   Википедия

  • ЛАПЛАСА ПРЕОБРАЗОВАНИЕ — трансформация Лапласа, в широком смысле интеграл Лапласа вида где интегрирование производится по нек рому контуру Lв плоскости комплексного переменного z, ставящий в соответствие функции f(z). определенной на L, аналитич. функцию… …   Математическая энциклопедия

  • ЛАПЛАСА ПРЕОБРАЗОВАНИЕ — в геометрии переход от одной фокальной сети конгруэнции к другой фокальной сети той же конгруэнции. Понятие Л. п. сети ввел Г. Дарбу (G. Darboux, 1888), обнаруживший, что аналитич. реобразование решений уравнения Лапласа где а, b, с известные… …   Математическая энциклопедия

  • Преобразование Фурье — Преобразование Фурье  операция, сопоставляющая функции вещественной переменной другую функцию вещественной переменной. Эта новая функция описывает коэффициенты («амплитуды») при разложении исходной функции на элементарные составляющие … …   Википедия

  • Преобразование Радона — интегральное преобразование функции многих переменных, родственное преобразованию Фурье. Впервые введено в работе австрийского математика Иоганна Радона 1917 го года[1]. Важнейшее свойство преобразования Радона обратимость, то есть возможность… …   Википедия

  • Преобразование Гегенбауэра — Преобразование Гегенбауэра  интегральное преобразование функции : где   многочлены Гегенбауэра. Если функция разлагается в обобщенный ряд Фурье по многочленам Гегенбауэра, то им …   Википедия

  • Преобразование Лапласа — Преобразование Лапласа  интегральное преобразование, связывающее функцию комплексного переменного (изображение) с функцией вещественного переменного (оригинал). С его помощью исследуются свойства динамических систем и решаются… …   Википедия

  • Преобразование —         одно из основных понятий математики, возникающее при изучении соответствий между классами геометрических объектов, классами функций и т.п. Например, при геометрических исследованиях часто приходится изменять все размеры фигур в одном и… …   Большая советская энциклопедия

  • Преобразование Хенкеля — В математике, преобразование Ханкеля порядка ν функции f(r) задаётся формулой: где Jν  функция Бесселя первого рода порядка ν и ν ≥ −1/2. Обратным преобразованием Ханкеля функции Fν(k) называют следующее выражение: которое можно проверить с… …   Википедия

Книги

Другие книги по запросу «Лапласа преобразование» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»